\j(@
GRAPHICS

NICK HAMPSHIRE

VIC
GRAPHICS

NICK HAMPSHIRE

DUCKWORTH

Second impression April 1983
First published in March 1983 by
Gerald Duckworth & Co. Ltd
The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1983 by Nick Hampshire

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
or otherwise, without the prior permission of the
publisher.

ISBN 0-7156-1702-8

British Library Cataloguing in Publication Data
Hampshire, Nick

Vic Graphics.

1. Computer graphics

2. VIC (Computer)

I. Title
001.64’43 7385
ISBN 0-7156-1702-8

Typeset by Centrepoint Typesetters Ltd, London
Printed and bound in Great Britain by
Redwood Burn Ltd, Trowbridge, Wilts

CONTENTS

Colour plotting

High resolution graphics
Graph plotting

Using the video memory
Scaling and stretching
Rotating and moving

3D displays

29
87
99
117
137
159

AN OVERVIEW

The provision of low cost high resolution colour graphics is
probably one of the most exciting and challenging features of a
popular home computer like the VIC. With these features a whole
new range of exciting applications are opened up for the adven-
turous programmer. Applications which involve the true visual
display of concepts, ideas, and fantasies. In this book | hope to
show you how to realise some of the graphics display potential
possessed by your machine.

To stimulate your imagination let's first look at some of the
possibilities presented by a high resolution colour graphics
computer. Perhaps the most obvious application is in simulations,
and the most obvious use of simulations is in education. There is
an old saying when trying to explain a concept, that a picture is
worth a thousand words. This is particularly true in all science
related subjects. Relationships can be shown between two or
more mathematical functions displayed as curves on the screen,
or a mathematical process such as differentiation can be shown
graphically taking place. In chemistry three dimensional graphics
can be used to show molecular structures and bonding. A
chemical process can be displayed and the various reactions
simulated by the computer.

Some of the best examples of simulations involving high reso-
lution colour computer graphics come from physics. The teacher
has the ability to display the concepts of mechanics, such as
Newton’s laws, the trajectory of a missile or planetary motion.
Magnetic and electrostatic fields and their interrelationship can
easily be displayed, as can the path of light through optical
systems. In electronics the computer can be used to simulate a
circuit and the high resolution graphics used to display the circuit
on the screen.

Computer games — which are in the majority of cases just a
special fun form of simulation — are obvious candidates for
improvement by the use of high resolution colour graphics dis-
plays. Although the VIC still cannot match the incredible real time
and very realistic displays found on many of the best arcade
games, the quality of the home computer’s graphics does allow
for the programming of some fantastic display based games. lp-all
these games programs the graphics display is augmented by the
sound generation ability of the VIC. The range of computer
games is enormous, ranging from arcade games like Space

4

Invaders or Packman to chess programs with a high quality
display of a chess board and all the pieces, or the fantasy games
like Adventure which can be endowed with some very interesting
graphics.

Computer art is an application for high resolution colour
computer graphics in which a growing number of people are
becoming interested. The artist uses the graphics display as a
canvas on which the picture or design is drawn either in a single
colour or using all the colours available on the computer. The
picture is created by using either a specially written program and
an input data base to generate the display, or a light pen or
joystick to interactively paint the picture on the screen, much as
one would using a paint brush. Such dislays could of course be
either a static one off picture or an animated sequence. The
generation of animated computer art displays is a subject of
increasing interest to creators of cartoon films; this should be
within the capabilities of a home computer like the VIC. An
example of such graphics was shown in the film ‘Star Wars' in
the scene where the rebel pilots are briefed on the workings of
the ‘Death Star’. Full length feature animated films generated by
computer can be expected within the next year.

An important application for graphics simulation is using three
dimensional graphics software to aid the designing of buildings or
engineering structures. This is known as CAD, or Computer
Aided Design, and although in commercial applications confined
to very large fast computers it is quite possible to perform most
of the CAD operations on a machine like the VIC. The designer
builds up a model in the computer memory, and can using this
data base view the structure from any angle or even go inside.
Perspective, light and dark shading, surface texture and colour of
solids can all be emulated by such software; some examples of
routines to do these functions are given in the last section of this
book. Another variation of this type of application is used in flight
simulators, where the computer using a previously entered data
base, creates a simulated display of a piece of terrain or an airfield
as the person using the simulator would see it from any position
in three dimensional space. In a flight simulator the position of
viewing would depend on how the ‘pilot” moved his controls.
Simulated landings and take-offs can thus give a visual feedback
to the pilot through the use of such computer graphics.

.

.

z?%%i%&mﬁmmm@%
-

=
= -

Gl -

e

e

-
-
o

-

e
.

. e
-
Bl %

-
o

G
-

e
s

. “

St H,Vw%ni Acogeite -
-
.

o
i

st et s
e
s

St e
i e sneses S e e
S

“ebpecsaiiioa

-

.
s .
e : .

COLOUR CONTROL

The colours which can be displayed on the VIC are divided into
two groups. The first group has eight colours, these can be used
for the foreground or video colour, RAM stored colour and the
border. The second group has 16 colours which can be used for
the background colour or for the auxiliary colour in the
‘Muiticolour’ mode. The colours available in each of the two
groups are as follows:

AUXILIARY/BACKGROUND BORDER/CHARACTER
0 Black Black
1 White White
2 Red Red
3 Cyan Cyan
4 Magenta Magenta
5 Green Green
6 Biue Blue
7 Yellow Yellow
8 Orange

9 Light orange

10 Pink

11 Light cyan

12 Light magenta
13 Light green
14 Light blue

15 Light yellow

Text and graphics displays can be generated in these colours us-
ing the colour codes within the print statements. This is adequate
for the setting of colours in most displays, but when dealing with
high resolution or muiticolour displays the commands in the Super
Expander are essential for easy programming. It should be
remembered that colours can only be defined for single character
spaces rather than single display points.

THEORY OF COLOUR PLOTTING

The VIC has two modes of colour operation, ‘High resolution’
mode and ‘Multicolour’ mode. The operating mode employed and
the colours used are determined by the contents of control
registers #15 and # 16 of the 6561 and the colour video RAM.
The colour video RAM is located in a 506 byte block of memory
starting at location $2600 (decimal 38400). If there is more than
8K of user memory, the starting location of colour RAM moves
down to $9400 (decimal 37888). The colour video RAM is only
four bits wide; bits O-2 are used to select the character colour and

8

bit 3 is used to determine if that character is in 'High resolution’ or
‘Multicolour’ mode.

The ‘High resolution’ mode is selected by having bit 3 of the
video colour RAM set to zero; this is the normal mode of operation.
In this mode there is a one to one correspondence between
character generator bits and the dots displayed on the screen. This
means that all ‘one’ bits will be displayed as dots of one colour and
all ‘zero’ bits as dots of another colour. Each character has two
colours, a foreground (all the ‘one’ bits) and a background colour
(all the ‘zero’ bits). One of these colours is determined by the first
three bits of the video colour RAM and the other by bits 4-7 of con-
trol register # 16.

In normal operation the foreground colour is stored in the video
colour RAM and the background colour, which is common to all
characters displayed on the screen, is stored in register # 16. This
can be reversed so that all characters have the same foreground
colour, which is determined by register #16, and different
background colours set by the contents of the colour video RAM.
Whether a common foreground or a common background is
selected depends on the contents of bit 3 of control register # 16.
If bit 3 is set to 1 then the display will have different colour
characters on a common background colour; if bit 3 =0 then all
characters will have the same colour against a different colour
background. In addition to the foreground and background colours
the 6561 allows the colour of the border around the display area
to be changed; this is selected by bits 0-2 of control register # 16.

In summary; in ‘High resolution’ mode the colours used for a
particular character are set by:

1) Set bit 3 of register # 16 for common background or common
foreground.
common foreground — POKE 36879,PEEK(36879) AND 247
common background — POKE 36879,PEEK(36879) OR 8
2) Set the common background/foreground colour in bits 4-7 of
control register # 16. There are 16 possible colours and it is the
colour number as shown in the above table which is stored in the
register, as in the following example where variable C is the colour
and is set to a value between O and 15:

POKE 36879,PEEK(36879) AND 15
POKE 36879,PEEK(36879) OR (C* 16)

return to normal with — POKE 36879,27

3) Set the border colour in bits 0-2 of control register # 16. There
are eight possible border colours and it is the colour number

9

shown in the above table which is stored in the register, as in the
following example where variable C is the colour and is set to a
value between O and 7.

POKE 36879, PEEK(36879) AND 248
POKE 36879, PEEK(36879) ORC

4) Put the colour code for each character to be displayed into the
corresponding location in the colour video RAM. There are eight
possible character colours (see above table) and they are stored in
bits O-2 of the 506 locations in the colour video RAM. This is done
automatically in a PRINT statement where the character colours
can be embedded in the string as colour commands, but if POKE
commands are used to put characters into the video RAM then the
colour code must also be POKEd into the corresponding location in
the colour RAM. Given the column number — COL, and line
number — LIN, of the display plus the ASCI! code of the character
— A, and the colour code for that character — C, the following
routine will put the character and its colour into the correct loca-
tions in the two video RAMs:

100 Q=LIN*22+COL
110 POKE 38400+Q,C
120 POKE 7680+0Q, A

The ‘Multicolour’ mode is selected by having bit 3 of the video
colour RAM set to one. In this mode there is a two to one cor-
respondence between character generator bits and the dots
displayed on the screen. This means that two bits of the character
generator matrix for that character code correspond to one doton
the screen, and the colour of that dot is determined by the two bit
code in the character generator.

Unlike the ‘High resolution’ mode in which only two colours can
be displayed for each character, ‘Multicolour’ mode allows four
colours per character. However, since two bits of character
generator data correspond to a single dot on the screen the
horizontal resolution is half that of the ‘High resolution’ mode.
That is, each 8 x 8 character cell in memory maps onto an 8 x4
character on screen (8 lines of 4 dots). Each character occupies
the same space in either mode since both modes can be intermix-
ed in a display; this means that a single dot in ‘Multicolour’ mode
occupies the same space as two horizontal dot positions in the
‘High resolution’ mode. The amount of memory required for
storage of the 8 x 4 ‘multicolour’ characters is the same as that re-
quired for the 8 x 8 characters; the data is simply mapped dif-

10

ferently on screen.

The ‘Multicolour’ mode is not suitable for use with the ROM-
based character generators but can be very effective when used
with a user definable RAM character generator. This is because
the ROM character generators are designed for ‘High resolution’
mode displays where each bit in the character matrix represents a
dot position on the screen. In ‘Multicolour’ mode the character
generator contains the colour of each dot by using two bits to
represent each display dot; with a ROM character generator most
characters will thus appear as an array of different coloured points
rather than a character. See the section on high resolution for in-
formation on the user of user definable RAM character generators
and high resolution point plotting.

In “Multicolour’” mode the two bits of the character generator
character matrix which represent each screen dot select one of
four colours for that dot. The four codes created by these two bits
tell the 6561 where to find the colour information for the dot. The
two bit code is not itself a colour code; it is simply a pointer to four
different colour codes; this gives more flexibility as each code
pointed to has either 3 or 4 bit resolution. The use of a simple two
bit pointer, combined with bit 3 of the colour video RAM being us-
ed to determine the colour display mode means that it is possible
to freely intermix ‘High resolution’ and ‘Multicolour’ characters in
adisplay. The colour of the dot can be the background colour, the
foreground colour, the exterior border colour or a special auxiliary
colour, information on which is stored in bits 4-7 of control
register #15. The ‘Multicolour’ mode select codes are:

0 O — Background colour

O 1 — Exterior border colour
1 O — Foreground colour

1 1 — Auxiliary colour

The use of the ‘Multicolour’ mode can be summarised using the
following example:

1) Set the background colour to one of 16 colours; this colour
code is stored in the following example in variable C which will
have a value between O and 15:

POKE 36879,PEEK(36879) AND 15
POKE 36879,PEEK(36879) OR (C*16)

2) Set the exterior border colour to one of eight colours; this colour
code will have a value between O and 7 and in the following exam-

11

ple is stored in variable C:

POKE 36879.PEEK(36879) AND 248
POKE 36879,PEEK(36879) ORC

3) Set the foreground colour to one of eight colours by POKEing
the colour code into the colour video RAM location corresponding
to the location of the displayed ‘Multicolour’ character. Since it is
bit 3 of the colour video RAM which determines whether a
character is displayed in ‘High resoiution’ or ‘Multicolour’ mode, 8
should be added to the colour code values for all characters to be
displayed in ‘Multicolour’ mode.

4) Set the auxiliary colour code to one of 16 colours; this colour
code will have a value between O and 15 and in the following ex-
ample is stored in variable C:

POKE 36878,PEEK(36878) AND 15
POKE 36878,PEEK(36878) OR (C*16)

Note: bit 3 of control register #16 has no function in
‘Multicolour’ mode but should be set to the normal value of 1,
unless otherwise required when intermixing both colour display
modes.

5) Set up the character generator matrix for each character to be
displayed, thus: '

bit
byte 76543210 Hex Location
0 00011011 1B 5120
1 00011011 1B 5121
2 00011011 1B 5122
3 00011011 1B 5123
4 000000O00O 00 5124
5 01010101 55 5125
6 10101010 AA 5126
7 11111111 FF 5127

This example is for a character in a user definable character
generator starting at location 5120. The character has a code
value of O and shows each of the four colours available in
multicolour mode characters thus:

12

NOOAWN-SOS

Hex
1B
1B
1B
1B
00
55

FF

Location
5120
5121
5122
5123
5124
5125
5126
5127

13

RANDOM COLOURS
DESCRIPTION

Colours can be used to fill biocks of the screen thereby generating
interesting effects. This program shows how the colour
command can be used to generate colourful dynamically moving
patterns. The display consists of a dynamically moving point at
which are plotted squares of different colours, the movement of
the point and the colour selection are random. The resulting
display is a changing pattern of variously shaped different
coloured blocks.

RUNNING THE PROGRAM

Since no parameters are input by the program, simply type RUN
and watch the program display a constantly changing coloured
pattern.

PROGRAM STRUCTURE

110 set starting point on screen

130 set random variables for colour and number of charac-
ters of same colour

220 set random variable for movement direction

230-260 move in one of four directions
270-310 check character position is within screen boundary
330-380 plot coloured square

14

1 REM RRNDOM COLOURS
REM ##sbbmuonsdhptbudsbni b
REM
FEM THE ROUTIME GEMERRTES A IWHAMICALY
REM MOVING COLOUR DISFLAY.
SCHCLR
REM
REM SET COLOUR
REM
CRAFHIC 2:COLOR 1,1.1.@
FOKE3EB73, FEEK(36573> 48
S5 REM
100 REM SET COMSTRMTS
110 A=1@:B=1@
126 REM
138 REM RANMDOMISE COLOLR
156 REM
160 C=IHMTC(RHDC1>#8)
165 IF C=1 THEM 1€6
176 N=IMT/RMIIC1 %105
180 REM
19@ REM MARIN CHRRARCTER PLOTTIMG ROUTIME
200 REM
210 FOR ¥=8 TO N
220 D=INTC{RHDC(1>%4>
232 IF D=0 THEMN FA=R+1
24@ IF D=1 THEH R=A~1
258 IF D=2 THEM E=B+!
260 IF D=3 THEM E=R~-1
265 REM
276 FEM WITHIN BOUMDS?
275 REM
280 IF B>18 THEM E=13
290 IF B<1 THEM B=|
200 IF A>18 THEH A=18
1@ IF AC1 THEHW A=1
28 FEM
3@ FEM PLOT COLOURED CHARACTER
342 REM
350 COLOR 1,1.C.08
360 CHRR ALE." Y
TR HEXT X
se@ GoTO 1@

P AR AR N R B N AN
MR

4]

)
]

READY.

MAP
DESCRIPTION

Background colours can very effectively be used to fill blocks of
the screen with different colours to define outline shapes. High
resolution or character plotting can then be used to put details on
the outline. This program shows how this can be done and to
illustrate the technique draws a map of North America with
appropriate text legends. The background colours are set by
POKEing the correct colour value into the colour memory in this
program only two outline colours are used and for this reason the
plotting is divided into two sections, one for each colour. The
display is built up from lines or single characters of colour. The
data for each line displayed is stored as data statements and
consists of sets of three values — line number, column number
and number of characters from that position to be plotted
continuously on the line. If the display was to be plotted in many

different colours then an extra colour parameter should be added
to the data tables.

RUNNING THE PROGRAM

Since no parameters are input by the program simply type RUN
and watch the program display a map of North America on the
screen using different colours for each country,

PROGRAM STRUCTURE

100-140 fill the screen with cyan colour to act as a
background to the display

200-280 plot the map of USA in green using data from table
lines 310-370

300-370 data table for drawing map of USA, note that the
data is stored as a sequence of three values: line,
column and length of block

500-570 plot the map of Mexico and Canada in white using
data from the table in lines 600-700

600-700 data table for plotting Mexico and Canada

900-1070 put legends on map — note: make sure that the
paper colour for the text or high resolution is identical
to that of the background colour already plotted

16

1 REM MAP

2 REM $#tddeddedds e ed i irses

3 REM

1@ FEM THIS PROGRAM DRAMS R COLOURED
15 REM MAP OF NORTH AMERICA.

2@ REM

38 REM

16@ REM SET MAP FACKGROUMD COLOUR AT ELUE
118 REM

122 COLOR £.€6.,8,08

148 PRINMT"DM

1€5 REM

26@ REM DRAM THE U.S.A. IH GREEM

265 REM

218 PEAD R.S,L

228 IF R=10@ THEHN GOTO 5060

230 P=3C4RG+R#22+%

220 X=7E0@4R¥22+S

248 FOR G=0 TO L~}

252 POKE P+0.S

255 POKE #+Q., 1€2

266 NEXT @

27@ REM

2288 6070 210

29@ REM

308 REM DATR FOR PLOTTING !L.S.A.

305 REM

31@ DATA 6.1.4

228 DATA 7,1.14,7.12,2,8.0,14,2,17,3
332 IATA 9,0.,1%,9,1€.4,18,0,19

2402 DATA 11,0,18,12,0,18,13,1,17,14,1,17
25@ DATA 15,2,1%5,1€,6,11.17,7.8,17.,15.2
260 DATA 18,8,%5,1%2,16.2,19,17.1

72 DATA 19@, 100, 100

4%% REM

%02 FEM DRAW CAMADA AMD MEXICO IN WHITE
SeS REM

T12 RERD R, S.L

520 IF R=100 THEH 520

T30 P=t240R+R#Z2+0

535 M=TESO+R%2Z+5

540 FOR Q=" TQ L~}

TER POKE P+0Q.1

S35 FOKE ¥+0. 160

560 HEKT 0

Sva GOTO Sie

595 REM

€00 REM DATA FOR CAMADA AMD MEXICO
85 REM

£16 TRTA B8.2.28.1.0,26

€20 IATA 2.0,.20,3,8.20,4,0.20.5,1.18.6.5.15

ICIt""f
1670

% DRTH
< DRTA

1
DATA 2
1

IATA A, 168

S REM

REM PUT HAMEZ OM MAP

REM

FOorR I=1 Tﬂ 2

RERD R, S, K%

’?E”E+?2#P.+c?

FOR =@ TO LENCXE)-1

POKE K+0, ASCCMIDE/ME. Q41,120 +64
HEXT @

MEMT 1

GET R$:IF Ag="" THEM 1008
PRIMT " auTnalslala]TeleTelalaleqeaiaia
COLOR 1.3.6.0

EHND

DRATA 3,5, "CAMRDA"

DATA 20,6, "MEXICOY

DATR 12,8."Us/"

REFADY.

18

RAINBOW
DESCRIPTION

This program demonstrates how colours can be used with the
high resolution plotting commands plus some of the limitations of
high resolution colour. The display is a rainbow of four different
coloured semicircles — red, yellow, green and blue. Each coloured
semicircle is composed of three high resolution half circle plots. As
the program stands the display produced has the four arcs each
with a different colour, but notice that the gap between each arc is
quite wide, try reducing the width of this gap and the colours of
each arc start to break up. The gap can be reduced by changing
the step value in line 210. The reason for this problem is simply
that the colours are defined on a character square basis, trying to
display two high resolution points of different colours in the same
character space is impossible, the result is that the colour of the
first plotted point will be changed to that of the second as soon as
the second is plotted.

RUNNING THE PROGRAM
This program requires no input parameters, therefore simply enter
RUN and watch the computer draw a coloured rainbow on the

screen.

PROGRAM STRUCTURE

90 draw border around screen using subroutine at
500

110 coordinates of semicircle centre

120 start and end angle of semicircle

200-330 loop to draw four coloured arcs

410 colour data stored as colour values for each arc

500-560 border drawing subroutine

19

2
A

¥ .
il
i
n-..-
Via
....w
"Q
nef_f/
?f
N T
fm..me o
..mn.n.».:u.n-muu-

20

1 REM RAIMBOW

2 REM ##¥###¥Eedtupmidionssibss
3 REM

10 REM THIS PROGRAM WILL DRAW A COLOURED RAIMEOL
20 REM USIHNG HIGH RESOLUTION
32 REM PLOTTING.

5@ REM SET COLOURS

55 REM

&8 GRRFHIC 2

7@ COLOR 1,1.0.@

72 REM

8@ REM DRAW EBORDER

85 REM

S@ GDSUB Sio

85 REM

186 REM SET COMSTARNMTS

105 REM

116 XC=512:YC=9560

120 F1=50:P2=1g0

i3@ REM

14¢ REM LOOP TO DRAW FOUR COLOURED RAINEQL
158 REM

168 FOR R=188 TO 650 STEP 15¢
170 RERD C

188 REEGIOH C

122 REM

200 REM THREE LINES TO EACH COLOUR
285 REM

210 FOR G=28 TO €0 STERP 20
220 P=R+Q

238 CIRCLE 2,XC.%¥C.,@.7%P.,P.PL.P2
248 NEXT Q

250 MEKT R

208 REM EMD

31@ GET A%:IF R$="" THEM 310
320 COLOR 1.83.6.,¢

338 GRAFHIC B

348 EMD

395 REM

423 REM COLOUR DRTA FOR RAIMEOW
405 REM

4180 IARTA 2.7.5.6,

495 REM

568 REM DRAMW BORDER

589 REM

S18@ POINT 2.0.0

S28 DRRW 3 TO 89,1023

536 DRAW 3 TO 1823.,1@23

5S40 DRAW 3 TO 1923,

592 DRAW 2 TO .o

566 RETURH

21

FAN
DESCRIPTION

This is the last program in the section on colour and it simply
produces a pretty changing and colourful pattern using high
resolution colour plotting. The pattern is built up from different
coloured high resolution lines and can be varied by changing the
initial variable values in line 110 or by inserting extra loops into
the main display loop — lines 140 to 220. The colour of each
plotted line is set by a random value between 1 and 7 in lines
350-370. The lines are drawn by the subroutine 400 to 510.

RUNNING THE PROGRAM

Since no parameters are input by the program, simply type RUN
and watch the pattern develop on the screen in constantly
changing colours.

PROGRAM STRUCTURE

50 set background colour

110 initialisation variables — change for new pattern

140-220 main display loop — each of the four sub loops in this
section draws a different part of the pattern, adds
more sections or change values to change patterns

300-350 set values for line draw subroutine

360-370 set new line drawing colour

400-510 line drawing subroutine

600-660 border drawing subroutine

22

23

1 REM FAHM

o REM sdddkidpiiok gk
3 REM

1@ REM THIS PROGRAM DRAWS A
2@ REM COLOURED ROTRTING FAM
20 REM

46 REM SET BRCKGROUND COLDUR
58 GRAFHIC 2

¢@ COLOR 1.1.,0.0

75 RENM

60 REM DRAL BORDER

85 REM

5@ GOEUR €86

95 REM

166 REM ZET UFP VRRIABLES

165 REM

110 X=0G:Y=0:0=25:2=0

128 REGICH 2

132 REM

135 REM MRIN LOOP

137 REM)

140 FOR ¥=2@ TO 100 STEP 24
150 GOSUR 3@@:NEKT X '
166 FOR Y=28 TO 1@6@ STEP 24
176 GOSUE 30&:NEXT ¥

168 FOR X=1000 TO 28 STEP ~24
150 GOSUB 30Q: NEXT X

200 FOR Y=1000 TO 28 STEP -24
210 GOSUB 38G:MEXT v

220 GOTC 140

290 REM

@@ REM DRAW LINE AND SET IMK COLOUR
305 REM

31@ KE=1000-¥:'YB=1028-Y

G328 HE=X:'YE=Y

330 GOSUER 400

340 Z=Z+1'IF Z>=Q THEN Z=0
258 Q=INT(RMDC1)%36)

360 C=IMTIRMDCLO¥?)+1

€% IF C=1 THEM 360

376 REGIOH C

380 RETURM

320 REM

400 REM DRAM LIME

418 A=KE-XE

428 B=YE~-Y3

420 C=SQR(AKFA+EXB)

446 Ux=A/0

458 UY=E R

460 FOR =@ TO @ STEF 24

473 Hi=HB+L%Y

24

€00
&5
&lo
c2e
&3¢
640
£50
668

Y1=YR+L#LlY
IF X1<@ 0OR Y1<@ THEN S5ip

3 FOINT 2,K1.%1

MERT L

RETURH

FEM

REM DRAW BORIER
REM

FOINT 2.,8,0

IRAM 2 TO @, 1223
DRAK 2 TO 1@23, 1023
DRAW 2 TO 1@2z.@
IRAK 2 TO ©.0
RETURH

RERDY.

25

COLOURS
DESCRIPTION

Although the VIC has the ability to display a wide range of colours,
and has some good high resolution graphics routines built into
ROM, using both of these can at best be a little awkward. The use
of the VIC cartridge the ‘Super Expander’ makes life considerably
easier by giving you such commands as CIRCLE, PAINT, and so
on. In this program we are going to use those two commands in
particular to draw a circle, colour it in, and at the same time have
you specify the colour of the ‘paint’ that we are going to use to fill
the circle.

RUNNING THE PROGRAM

In this program only one input is required, and that is the colour of
the paint to be used. Our input routine, commencing at line 100,
but consisting mainly of the subroutine fromlines 400 to 460, will
only allow an input of a number from O to 9, or the ‘—' key.
Inputting a negative number allows you to exit from the program,
otherwise you just go back for another go. The central X and Y co-
ordinates XC and YC (using the graphic 2 mode and a scaled
resolution of 1024 by 1024) are set in lines 120 and 130
respectively, and the radius R is set in line 140. Our border
drawing subroutine in lines 300 to 360 is used to DRAW a neat
border around the screen, before drawing the circle and filling it in
with the routine in lines 185 to 230. Line 240 then sends us back
to request another colour.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at
300

100 input colour using subroutine at 400

105 check for end of program

120 set X co-ordinate of centre of circle

130 set Y co-ordinate of centre of circle

140 set radius of circle

150 draw border round screen using subroutine at

300

185-240 draw circle and paint it in

250-280 end routine

300-360 border drawing subroutine

400-460 data input and checking routine

26

1 REM COLOURS
2 REPM s e o fokoioe s

3 R
10

20

5@

4@

45

5

55

€@

70

75

60

85

5

95

100
161
162
163
104
105
166
107
116
115
120
130
140
150
155
160
170
16@
165
15¢
oE@
zes
210
220
250
240
250
zE@
270
295
200
405
zi@

COLOR 3.3.98.0
REM
REM DRAW BORDER
REM
GOSUE 380
REM

REM INPUT CCOLOUR OF PRINT
ZE="":T=5

CHAR 19.,2,"%?

GOSUB 404

C=2

IF C<0 THEHW 258

IF CO7 THEHW 1og

FOR I=1 TO S@@:HEXT I
REM SET OTHER PARAMETERS
REM

XC=512

YC=473

R=350

REM DRAL BORDER

REM

SCHCLR

GOSUE 308

REM

REM DRAW CIRCLE

REM

REGIOH C

REM

CIRCLE 2.,MC,%C,0.74R,R
PAIHT 2.KC.YC

REGIOW @

GOTO 186

REM EMI!

COLCOR 1,3.€6.@
GRAFHIC @

EHD

REM

REM DRAM EBEORLER

REM

FOIMT 2.6.,0

EM

REM FROGRAM TO DRAW R CIRCLE
REM AND COLOUR IT IMW USING THE
REM “PRIMT” COMMARMD.COLOLUR OF
REM PRIMT IZ IHWPUT.

REM

REM SET COLOURS

REM

GRAFHIC 2

27

328 DRAW 2 TO @,950

338 DRAW 2 TO 1@23.359

248 DRAM 2 TO 1823.8

358 IRAM 2 TO 9.8

360 RETURH

395 REM

408 REM INFUT DATHA

4835 REM

418 GET A%:IF fA$="" THEN 410
420 IF (ASCLA$) <48 OR ASCCAEI>S7) AND RS~ THEH 4358
430 CHAR 13, T,A$:T=T+1

440 Z¢=Z%+R%$:'GOTO 418

450 Z=VAL(Z$D

46@ RETIURN

RERDY.

28

S
- ,“Wmﬁmwﬁﬁm@%g&

e o

T

Svaias

.

.
.

-
.
-

SHASCata bn st v aae i o e g e SR AN s o
o o
e

A

.
.
. : . o
| o
G

e

. -
, . - o
e e ﬁ »Mm .
. .. .

‘ - -
. -

. e

.

HIGH RESOLUTION DISPLAYS

Besides normal text the VIC can display drawings and shapes.
Such graphics displays can be achieved using either the simple
character graphics or the high resolution point plotting facility.
Character graphics can be built up using strings of graphic
characters displayed at the correct position on the screen. Such
displays are, however, simple and crude; wherever possible, high
resolution point plotting is preferable.

The easiest way to give the VIC high resolution point plotting
capability is to use the Super Expander cartridge. This cartridge
adds a range of useful high resolution point plotting commands to
the VIC. If you do not possess this cartridge, a short program writ-
ten in Basic, such as the example at the end of this section, can be
used to plot high resolution points, lines etc.

THE THEORY OF HIGH RESOLUTION PLOTTING

The VIC has two display modes, normal text mode and user
definable character mode. The modes are determined by the posi-
tion in memory of the character generator. There are also two
modes of colour operation, high resolution and muiticolour. The
VIC is thus capable of several permutations of colour and display
mode.

The two display modes depend on whether the normal internal
ROM-based character generator is used or a user definable RAM
character generator. The position of the character generator
within processor memory space is determined by the contents of
bits 0-3 of control register # 5. These four bits form bits A10 to
A13 of the actual character generator address as follows:

The normal contents of bits 0-3 of control register # 5 are zero;
the way the VIC is configured, this gives a character generator ad-
dress of Hex $8000 (decimal 32768). Starting at this locationis a
4K ROM, the character generator; this contains the usual dot pat-
tern for each of the 256 different characters which can be
displayed. The 4K character generator ROM contains two
separate character generators each occupying 2K of ROM.

The first of these two character generators which starts at ad-
dress Hex $8000 (decimal 32768) contains the dot pattern for
the 128 normal upper case and graphics characters plus the 128
reverse field versions of the same characters. The second
character generator starts at location $8800 (decimal 34816)
and is identical to the first except that part of the graphics
character set is replaced by lower case characters. When the se-
cond character set is enabled the VIC will normally display in lower
case characters rather than the normal upper case; upper case will

30

be displayed with the shift key depressed.

The second character generator can be enabled normally by
pressing the shift key and the Commodore logo key simultaneous-
ly. Alternatively, one can change the contents of control register
#5, thus:

POKE 36869,242: set lower case display mode
POKE 36869,240: set upper case display mode

This simply shifts the starting address of the character
generator up 2K in memory, thereby accessing the second
character generator.

The character generator starting address in control register # 5
can be changed so that the character generator is located in RAM,
thereby allowing user definable characters to be created. The star-
ting address of the user definable RAM character generator on the
VIC can be any 2K (4K if 8 x 16 characters are used) block of RAM
located between address Hex $ 1000 and $3000. It should be
located at the highest possible address and protected from being
overwritten by Basic by lowering the top of memory pointers to
protect the RAM space used by the character generator. The set-
ting up of control register # 5 has the following rules:

1) The starting address is always located at the beginning of a 1K
block.

2) If the contents of bits 2 and 3 are both zero then the starting ad-
dress defaults to the ROM at $ 8000 plus the offset stored in bits O
and 1; this offset is in increments of 1K.

3) Bits 2 and 3 contain the starting address in increments of 4K.

Thus, to put the user definable character generator to start at
11K up in memory or Hex $2000 or 2 x 4K block plus 3x 1K
block, then bits O to 3 would be set up as follows:

Bits 3 2 1 0]
Binary contents 1 0] 1 1
Representing 2 x 4K blocks 3x 1Kblocks

The user definable character generator is very important since it
not only allows special graphics characters to be created but it
also allows high resolution point plotting on the VIC. This allows a
graph or display to be created with a resolution of 176 points in
the horizontal by 184 points vertically, sufficient to give a very
good quality display. High resolution point plotting is achieved by
programming techniques using the user definable character

31

generator. The use of the RAM character generator must be
understood before these techniques can be explained.

The first stage in creating a user definable character set is to
allocate a block of RAM memory for storage of the character
generator. If characters on an 8 X 8 matrix are being displayed
then 204-8 memory locations are required; if an 8 X 16 matrix is to
be used, then 4096 locations are required. Since a standard VIC
only has 3584 RAM memory locations available to the user, an
8 x 8 matrix user definable character generator using 2048 of
these locations is the only one feasible. The user RAM on a stan-
dard unexpanded VIC starts at memory address 4096 and goes
on to address 7679.

The character generator can be programmed to start at any of
the following addresses within that range: 4096, 5120, 6144 or
7168. Since 2048 locations are required for the character
generator, the only possible starting location is 5120; this leaves
1024 bytes-free for user programs (not much; purchase of the
standard 3K RAM expansion module is strongly recommended; its
use will not change the start address recommended above). This
area of RAM chosen for use by the character generator must be
protected from being overwritten by a Basic program or data; if
this happened the display would be destroyed. The user definable
character generator can be protected from being overwritten by
lowering the top of memory pointers, thus:

10 POKE 51,255: POKE 52,19
11 POKE 55,255: POKE 56,19
12 CLR

The next stage is to put the data about each character into the
new character generator. This is done by using POKE commands
or machine code load statements to put information into the 2048
memory locations. Before this can be done each of the new
characters must be designed; this entails drawing each character
on an 8 x 8 grid (see Fig 1). Once the character has been designed
it can be converted into the block of eight numerical values for
storage in the character generator. Each line in the 8 x 8 grid cor-
responds to a byte of data and each of the eight bits in that byte
corresponds to a dot or column position on that line.

Information is stored in memory in binary; thus by considering
each bright dot to be a logical ‘1’ and each space a logical ‘0’, a
line of dots in each character can be converted into a numerical
value. The way this is done is shown in Fig 2. Some examples of
character designs and their conversion to numerical values are
shown in Fig 3. From these values a table can be created, one col-

32

umn having the character generator address and the correspon-
ding entry in the second column having the value to be put into
that location.

The table is divided into blocks of eight entries, each block con-
taining the data for one character. Each of these blocks of eight
entries is numbered starting at O and going up to 255. These
numbers correspond to the ASCIl or character code number
stored in the video RAM when the characters are displayed. An
example table using the character designs in Fig 3 is shown in Fig
4. The table need only contain the number of characters actually
required; all 255 possible character blocks do not have to be filled
in. Itis advisable though that the table starts at the first location in
the character generator; any gaps left should be filled with zeros.
If the character generator is being loaded from a Basic program,
the values in the table are best stored as DATA statements; these
values are then entered into memory using POKE commands,
thus:

20FORI=0TO 2048
21 READ A

22 IF A=""*""THEN 30
23 POKE5120+1, A
24 NEXT

30 END

100 DATA 24,20,20,18,48,112,96,0

110 DATA 0,24,60,126,255,24,36,66
120 DATA 255,126,60,24,24,60,126,255
130 DATA *

In the majority of applications alphanumeric characters are re-
quired in addition to user defined graphics characters; in such
cases part of the data in the ROM based character generator must
be transferred to the new RAM character generator. All the
alphanumeric characters plus the VIC graphics characters (or
lower case depending on which of the two character generators is
accessed) are contained in the first 128 characters of the
character generator. The remaining 128 characters are the
reverse field versions of the first 128 characters. The first 128
characters of the ROM character generator are transferred to the
new RAM character generator using a combination of PEEK and
POKE commands thus:

20FORI=0TO 1024
30 POKE 5120 +1, PEEK(32768 +1)
40 NEXT I

33

This leaves 128 possible user definable characters starting at
address 6155. These characters can be filled as described above,
and will have an ASCIl code starting value of 128. An example of
the routine to enter the character generator data will be as follows:

20FORI=0T0O 1024
21 POKE 5120+, PEEK(32768 +1)
22 NEXT I

30FORI=0TO 1024
31 READ A
32IFA=""*"THEN 200
33 POKE6144 +1, A

34 NEXT

60 REM DATA FOR ASC!l CODE CHARACTERS 128, 129,
AND 130

100 DATA 24,20,20,18,48,112,96,0

110 DATA 0,24,60,126,255,24,36,66
120 DATA 255,126,60,24,24,60,126,255
130 DATA *

Having loaded the user definable character generator it can be
used. It will remain in the VIC until the machine is switched off and
can thus be used by more than one program. To use the RAM
character generator two of the 6561 registers must be changed,
thus:

200 POKE 36869, 253
210 POKE 36866, PEEK(36866) OR 128

Once the user definable RAM character generator has been set
up and the 6561 registers changed to utilise the new character
generator, it can be used to generate special displays. If POKE
commands are used to place the characters in the video RAM
memory then the ASCII code value of the new characters is used.
If the new characters are incorporated into strings then it is essen-
tial to know which character in the normal character set the new
character replaces. This can be determined by using the table of
VIC ASCli codes and looking for the character with the same code
value as the new character. When the program is written the nor-
mal characters are inserted into the string; when the program is
run they will be automatically replaced by the new characters. Itis
important to note that when using POKE commands the colour

34

RAM location corresponding to the location where the character is
to be displayed must also be set to give the required colour, other-
wise the display will be white on white and therefore invisible. To
restore the normal function of the VIC ROM character generator,
use the foliowing two lines:

500 POKE 36869,240
510 POKE 36866,150

76 5 4 3 2110
ceeece e e e e
1 e e e ¢ e e
2 LAL 2K 2K
3 LAK
4 €¢ie
5 ¢ G e e
6 ¢ e 6 ee e
79 e ¢ € €l eleceie

7 6 5 4 3 210
e 6

e L
2 L @
3 ¢ ¢ eclecee
4 ¢ €
5 € €
6 € €
2

Examples of layout in design of characters.

35

36

ole[e[e[e[e]c|c|e]
R
27 25 25 20 2 2 2 20
RN
1284+64+32+16+ 844 +2+1 =255

[[e[ejele[eje] |
N
@ +64432+16+-8+4+2+0 =126
2[] Te[efe]e] | |
T 1 L. L 1. 1.1}
O+0+32+16+8+4+0+0 =60
s T] Jelef | ||
T 1. L 1.t 1]
0+0+0+16+8+0+0+0=24

s[T T Tefe] [[|

NN
@+0+G+16+8+0+0+0=24

s [[e[e]e[e] | |
O+ 0+ 16+ 84446+ 360

o[[e[e]elefe|e] |

N
@ 4-64+432+16+8+4+2+0 =126

7/efeefe[e[cle €]
xﬁ+&+§+%+é+i+z+a=ms

Conversion of a character into numerical values.

N O AW N e

N OO O s W NN -9

5 4 3 21 ¢
~0+0+0+04+0+0+0+0=0
¢ e ~0+0+0+164+8+0+ 0+ 024
2L 22K J ~0+0+32+16+8+4+0+@ =60
©|0/€© 6| —~0+64+2+16+8+4+2+0=126
|0 60 & @ -128+64+32416+8+4+2+1 =255
¢ c ~0+0+0+16+8+0+0+0 =24
® [~0+0+32+0+0+4+0+0=3%
@ |~0+64+0+0+0+0+2+0 =66
5 4 3 2 1 0
LK ~0+04+0+16+8+0+0+0 =24
® ¢ ~0+0+0+16+0+4+0+0=20
L [] ~C+0+0+16+0+4+0+0 =20
® ® ~@+0+0+16+0+0+2+0=18
6 0 ~0+0+32+16+0+0+0+ 0 =48
LK —~ @ +64+32+16+0+0+0+0 =112
@ ~0+64+32+0+0+0+0+ 0 =%
~0+0+0+0+0+0+0+0=0
5120~ O
5121 - 24
5122 - 60
5123 — 126
5124 — 255 Character # 1
5126 — 24
5126 — 36
5127 — 66
5128 - 24
5129 — 20
5130 — 20
5131 — 18 Character #£ 2
5132 - 48
etc.

37

22 Columns

$1E00 —»

— S1EIS

SIEWS—1»

23

Lines

,_.

Video RAM mapped onto screen

Character Generator

“
p<1
«

geseey

ASCli code
value x8 plus
Character generator

start address

38

High resolution point plotting uses exactly the same principles
as the generation of user definable characters. it entails filling the
video RAM with each of the 255 character codes (only half the
screen can be used with 8 x 8 characters). The RAM character
generator can then be used as a high resolution memory mapped
display. If all bytes in the RAM character generator are set to zero
then the screen is blank; set one bit in one of the characters and a
single high resolution dot will appear on the screen.

The relationship between a single dot on the screen, the loca-
tions in the RAM character generator and the code value in each of
the video memory locations is shown in Figure 6. This shows that
the basis of high resolution plotting is simply filling the video RAM
corresponding to the screen area of the high resolution display
with successive and incremented code values. The rest is a matter
of calculation to ensure that the correct bits are set in each of the
eight bytes corresponding to each of the character codes used in
the video RAM.

A high resolution plotting program consists of two parts, the in-
itialisation and the point plot subroutine. The initialisation sets up
the registers of the 6561 for the user definable character
generator, lowers the top of memory to protect that character
generator, puts the correct data into the video and colour RAMs
and clears the contents of the RAM character generator. The point
plot subroutine is called whenever a point is to be plotted or erased
and consists of a routine which calculates, from given X and Y
coordinates, which bit in which byte of the RAM character
generator is to be set or erased.

It should be noted that the area of the screen devoted to high
resolution plotting can vary from just a few adjacent character
spaces to the whole screen (to do this the 6561 is initialised to
display 8 x 16 characters rather than the normal 8 x 8; this re-
quires the RAM character generator to be enlarged to 4K). An ex-
ample of a set of Basic routines to plot points in high resolution,
plus lines and circles, is contained in the following program (these
routines use a 2K character generator and 8 x 8 characters so the
display only occupies half the screen; the 6561 registers have
been used to centre the display). Note also the routine which
transfers characters from the ROM character generator to the user
definable RAM character generator.

39

1 REM #3H$¥##idfEEEpi ksl ad i aiis ek e
2 FEM #FROGRAM TO FLOT THE GRAFH OF A FUMCTIOHN
3 REM #IH HIGH RESOLUTION ON THE WIC

4 REM $$##f¥EEEEEaEikEafipae kiR e ARy
3 REM

A& REM % INITIALISE €561 REGISTERE

T PRINT"="

S POKEZESET, 128

9 FOKEZ&3E5, 68

18 FiSa=0:F{@)=128:F(1)=64 :F(2)=32:F(31=16

28 Fi4dr=8:Fi{Si=4:F(E)=2:F(?>=1

28 FORG=GTOZSS

32 PORKETVSSE+0.0

4 FOKEZE400+0. 2

35 HERTQ

8 FORR=S120T0S126+255%8

42 FORER, 8

44 HEX 'Tu

él REM #FLOT GRAFH OF FUNCTION IN LINE S@

52 FEM

o FORC=8TUL17

8 L=45 +4u+\IN\C’IB‘

21 REM

32 REM #HIGH RESOLUTION POINT FLOT ROUTINE
=3 EEM

{25 A=35120

116 LR=L-2

128 LA=INT{LRY

138 R=A+{LA%17&)

1409 LE=CLR-LAY¥S

368 CR=C/S

218 CA=INT(CR)

20 A=A+ (CR%2)>

325 A=A+LE

330 CR=INTC(CR-CR>¥3)
438 POKER. FEEKCRYORF (CRD

HEXTC

S8 REM

REM #WAIT FOR KEY FRESS THEMW RETURH
2 REM #SCREEH TO HORMAL.

5 REM

ol GETARF: IFA+=""THEHEBY

iga POKEZESES, 240

1818 POKEIEGEE, 156

1aza FUiEub;D.;l 4

1838 FOKEZEESES, &3

40

REM #E$#FEREEEEEERRRRRARRER AR F R AR AR
REM #FROGRAM TO FLOT HIGH RESOLUTION
FEM #POINTS, LINES AND CIRCLES ON THE VIC.
REM ###F £ ERE AR RRERERRRRRRERR KRR A 4
REM

REM #INITIALISE €561 AHD CHAR GEH

REM

F{5)=0

FORG=8

) 03 O) P == A0 O3~ Oy LN Ja I PRI+

POKES
HEXTG

£
A

(D]
W0~ GG

41 FOKEGQ.
42 HEXTG
45 POKEGS

46 POKEZESEE, PEEK(36866)0R128

FU3)=16 F(4)=8:F(S

. POKE3E367, 128

g —4

POKE3ESES, €0

TFE=128F¢

TOZ5S

FOKEVEEO+2, @

400+Q, 2

FORG=5120TOS51 28+25548

o

§E3, 253

4?7 FOKEZSEE7, 150

99 REM
9
=
9
54 REM

]

1 EEM #DATA FOR LIME DRAMING

2 REM #ZTART AT COCRDIMATES Xl:?l
3 REM #END AT COORLOINATES N&.%2
4

a8 READX1, Y1, K2,Y2
IFX1=255THEN26D

1

183

116 GO3UB16GG
120

=8 GOTO1
158 DATH
131 DATA
152 DATA
153 DATA
154 DATR
135 DATH
15¢ DARTH
157 DATH
158 DIATA
153 DRTH
166 DATH
151 DATH
162 DATA
13 DATH
leé4 DATAH
185 DATAH
leg DATH
le? DATA
1638 DATH
185 DATH
178 DATH

1515

&0, 10,106, 48
88, 16,60, 40
95.38.,95.80
65, 38,65, 80
635,88,595,25
85,806,865, 60
90,586,596, 60
€5,68, 90, 66
78,775,708, €0
vS,75,75,60
8. 75.75,75
70,660,755, 60
7a, 50, 78,35
v9.50,79, 35
v0,58,75,55
78,35,75,35
83,56,85,35
98, 56, 93,55
85,558,903, 50
835,35,98,35
=8,80,28, 50

Dary—y

41

[R Rt B
LOUR PR Y (N Mo

b ek ek b ek fa A b peh
0L DD
[L R

Co G\ Ja OO

AVE N R e
CI P e LD D

[

248
16686
1618@
1928
1659
1208
1210
1236
1240
1250
127
1286
1258
13080
1316
1320
jeic]s)
1340
1350
1355
1280
13706
1350
1350
1416
1429
1466
1476
1450
2000
2010
2020
2838
2G4
2856

2968

42

DATA 22,50,22,50

DATA 128,86,1298,36

DARTA 122,89,122,50

REM #END OF LINE DATA

DATR 255,255,255,235

REM

FEM #DARTA FOR DRAMING CIRCLES
REM #CENTRE AT COOURDINATES CX.CY
REM #RADIUS K

REHM

DATA 255,255,255,235
C¥=21:CY¥=48:k=10

GOSURZEoE

CR=121:CYy=38:R=15

GUSUEZEOa

GETR$: IFA$=""THEH240

REM

REM #LINE DRAWIHG ROUTIHE

REM #USES DATA FROM LIHE DATR THELE
REM

¥h=¥z-K1

YD=Y2-¥Y1

AB=1:R/1=1

IFYD<BTHENAB=~1

IFXIKBTHENAL=~1

WKE=AEBS (XD : YE=ABS(YD) ' DI=KE-YE
IFD1>=0THEN1329

SP=-1:51=08:L6=YE : SH=XE
IFYD>=0THENSG=1

GOTO1348

58=0:51=-1:LG=¥E:SH=YE
IFRD>=BTHENS1=1

REM

;T=LG:T8=SH1UD=LG-SH1CR=LG—SHM2
=@

RENM

C=H1:L=Y1:GOSUEZ166
IFCT>=6THEN14208)

CT=CT+TS:K1=X1+E1 :¥1=Y1+50

GOTO1450

CT=CT-UD: X1=N1+H1:Yi=Y1+FB

TT=TT-1

IFTT<BTHENRETURN

GOTO1ZFE

REHM

REM #POINT FLOT ROUTINE

REM #USED BY LINE AHD CIRCLE DRAK

REM #ROUTIHES

FEM #C=¥ COORDIMATE

REIM #L=% COORDINATE

REHM

Z100
2118
2126
2138
2146
2380
2318
2329
2325
2338

I

4
[
G

2560

G S O G0 G gy
(AR AR R T W]
GO U LI -

[
i G

3} O3 Gt 3 G G 0 L0 G G [

€O
folaog
(K1 V2N
(sl ax]

AR NE

Saca
367a
sB88
298
Sloa

A=51Z20

LR=L+3

LA=INT(LRS

A=A+{LA%175>

LR={LR-LA> %3

Ck=CS

CR=INTC(CR>

A=R+{CA%S)>

A=A+LF

CR=INTC((CR-CRY*8>

FOKER, FEEKCRYORFCCR)

RETURMN

GETA$: IFA$=""THEN2E0G

REM

REM #CIRCLE DRAWING ROUTINE
REM #0X AND OY RRE OFFSET YRRIAELES
RE #WHICH DETERMINE WHETHER A CIRCLE
REM #0OR ELIPSE IS DRANN

REM

OXx=1:0%=1,2

A=2%n

N=1806

INC=(R-8)~MN

FORI=BTORSTEPIMC
KERESTINL) t ¥ INT CX#0N+CR+, 495
Y=R*COSCI) :¥=THNTCY#OY+CY+, 499)
L=Y:C=X:GUSUEZ106

NEXTI

RETURH

43

LINE
DESCRIPTION

Although the VIC Super Expander command DRAW will draw a
high resolution line between two points on the screen it has
several serious drawbacks. Foremost of these drawbacks is that
it uses relative coordinates, which are not very easy to use in
many graphics applications. Another drawback is that it is
impossible to draw a line with variable spacing between the dots.
Both these problems are overcome by using this program,
although it has one shortcoming in that since it is written in Basic
it is rather slow. Most of the programs in this book which require
line drawing use this routine. The variable R$ is input to deter-

mine if the line is to be drawn or erased (the line is erased if R$ =
E).

RUNNING THE PROGRAM

In the program ‘LINE’ there are six variables which are input by
program lines 100 to 130. The first two are input by line 100 and
are the X, Y coordinates of the beginning of the line. The second
two variables are the X and Y coordinates of the end of the line,
and the last variable is the spacing between the dots used to
draw the line. The input in line 120 determines whether the line is
drawn or erased. If an ‘E’ is input then the line will be erased, if
any other letter then the line will be drawn.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 500
100-150 input variables for start and end of line coordinates and
dot spacing

160-320 line drawing routine
500-560 border drawing subroutine
600-660 Data input routine

44

PP e s e s v s eerrss et e ey

45

i1 REM LIHME
2 REM s#fpdekerdsidspibpss
3 REM

i@
28
za
4
45
15
S5
608
78
75
80
es
S0

9%

100

REM THIS PROGRARM DRAKWS OR ERASES A LINE
REM BETWEEM TWO SETS OF COORDIMATES
REM THE SFACING BETWEEN THE DOTS USED
REM 1S WARIABLE.
REM
REM SET COLOURS
REM
GRAFHIC 2
COLOR 3.3.6.3
REM
REM DRRAW BORDER
REM
GOSUER S08
REM
REM LINE DRRARWING ROUTINE PARAMETER INPUT

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130

31
132
133
134
135
136
140
141
142
143
144
145

46

REM COORDINATES OF BEGIMMING OF LINE

Zg="":T=5

CHAR 19,2,"7"

GOSUB_508

XB=Z:Zg=""

CHAR 19,T,",":TaT+1

GOSUB 620

YB=Z:FOR I=1 TO 56@:MEXT I

IF ¥B<@ OR YB<@ THEN 700

CHAR 15,2," "
REM COORDIMATES OF EMD OF LINE
Z$= " T:S

CHAR 13,2,"?"

GOSUB_600

KE=Z:Z$=""

CHAR 19,T,",":TeT+1

GOSUB €08

VE=Z

FOR I=1 TO S8@:HEXT I

CHAR 19,2," "
REM DT SPRCING

Ze=1 0 i T=8

CHAR 19,2, "?"

GOSUB 629

DS=642

FOR I=1 TO S88:HEXT I

CHAR 19.,2," "
REM DRAW OR ERASE

CHAR 19,2, 7"

GET R$:IF R$="" THEN 142

IF RSCC(RF>CES OR RASCKREIDSG THEM
CHAR 19.,5.R$

FOR I=1 TO 5@9:HEXT I

14& CHAR 19,2," "
158 REM

160 REM DRAMW LINE

170 REM

180 P=KE-XB

188 Q=YE-YB

2090 R=SQR{P#P+Q¥Q)

210 LX=P/R

228 LY=Q/R

230 FOR I=0 TO R STEP DS

240 R=XB+I#LX

250 Y="YB+I¥LY

260 IF ¥>1823 OR Y>35 THEN 310
278 B=3

288 IF R#="E" THEN B=4

298 POIWT B.X.,Y

318 MEXT 1

320 GOTO 190

495 REM

500 REM BORDER DRAWING ROUTIME
565 REM

510 POINT 3.0.8

520 DRAW 3 TO 8,956

536 DRAW 3 TO 1023,950

540 DRAW 3 TD 1823.0

556 DRAKW 3 TO 9.0

568 RETURM

S85 REM

600 REM INPUT DRTR

605 REM

610 GET A$:IF A$="" THEN 610
€20 IF C(ASCC(R$><48 OR ASC(A$>>S7> AND A$C>"-" THEN €50
€38 CHAR 13, T,A$:T=T+1

640 Z$=Z$+A%£:00T0 610

€50 Z=VAL(2$)

€50 RETURN

695 REM

708 REM END PROGRAM

785 REM

710 COLOR 1.,3.€6.,0

720 GRAFHIC 8

728 END

RERDY.

47

RECTANGLE 1
DESCRIPTION

This program shows how to draw rectangles with sides which are
not parallel to the screen axis. This is simply done by using a
matrix of coordinates. Matrices are very important in graphics
and an understanding of the principles is essential. The
coordinate matrix is usually stored as data statements within the
program and subsequently placed in an array. The values in this
array can be manipulated mathematically, thereby allowing the
shape to be rotated, scaled or moved about the screen area. All
these will be dealt with in later sections of this book. In this
program the values are simply used to display the shape at the
specified coordinates.

RUNNING THE PROGRAM

Since all the coordinate values are stored in data statements —
lines 210 and 220 — there are no values to be input in the
program. However, to change the size or position of the rectangle
it is necessary to input new data values into these data state-
ments. Five coordinate values are required to draw the four lines
of the rectangle; the X component of these five coordinates is
stored in line 210 and the corresponding Y component in line
220. The best way to obtain these coordinate values for a new
rectangle is to draw the shape with the correct scale and
orientation onto graph paper and measure the required values.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
110-180 load matrix data into arrays

210 data for X component of coordinates

220 data for Y component of coordinates

300-350 set variables for draw

360 draw rectangle

600-660 border drawing subroutine

48

1 REM RECTANGLE

2 REM Sk kb bk bk
% REM

1@ REM PROGRAM TO DRAKM A RECTAMGLE
20 REM USING MATRIX METHODS.
36 REM

48 REM SET COLOURS

5@ GRAFHIC 2

€9 COLOR 3.3.8, 16

70 REM DRAW BORDER AROUND SCREEM
&8 GOEUB €00

196 REM IMPUT DATA FROM DRTA STATEMEMTE
11@ REM INTO ARRAY.

120 DIM NM(S,20

130 FOR C=1 TQ S

148 READ MCC, 1D

156 NEXT C

160 FOR C={ TO S

176 RERD MCC.,2>

188 MEXT C

200 REM DATR FOR COORDINATES
2085 REM

210 DATA 160,320,560, 400, 160
220 DATA 800,400,560, 960,569
30B REM DRAL RECTANGLE

310 FOR C=1 TO 4

328 ¥B=M(C, 1>

338 ¥YB=M(C,2)

340 XE=M(C+1,1D

350 YE=M(C+1.,2)

360 DRAW 3,.7#XB,YB TO .7#XE.YE
365 NEXT C

370 CETAS$:IFAL=""THEM370Q

38@ COLOR1,3,6€,0:GRAPHICO:END
620 REM BORDER DRAWING ROUTIHE
61@ POIMT 3.9.@

€20 DRAW 3 TO 1023,0

€30 DRAW 3 TO 1023, 1823

€40 TRAW 3 TO 8,1623

€5@ DRAW 3 TO 0.0

666 RETURN

RERDY.

50

POLYGON
DESCRIPTION

The only difference between this program and the previous
program ‘RECTANGLE’ is the data used to draw the shape. The
reason is that the use of a coordinate matrix is not confined to
rectangles, it can be used to generate any required shape. In this
program the data will draw an irregularly shaped octagon. To
change the shape and its position simply change the data.

RUNNING THE PROGRAM

The coordinate data values are stored as data statements — lines
210 and 220 — so now there are no values to be input when the
program is run. The size, shape or position of the shape on the
screen can be changed by changing the data values in the data
statements. It should be noted that when a shape is drawn the
number of pairs of coordinate values is one more than the number
of lines in the shape. The number of coordinate values used to
draw the shape is stored as the first data statement value — line
205. The coordinates are stored as two sets of data, first all the
X values and then in corresponding order all the Y values. In the
example the X coordinates are thus stored in the data statement
on line 210 and the Y values in line 220.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
110-180 load matrix data into arrays

205 number of coordinates in matrix data

210 data for X component of coordinates

220 data for Y component of coordinates

300-350 set variables for draw

360 draw polygon

600-660 border drawing subroutine

51

1 REM POLYGOH
2 REM ddfopksk ks
3 REM
1@ REM FROGRAM TO DRAW A POLYGON
15 REM WITH N SIDES USING MATRIX
28 REM METHODS.
48 REM SET COLOURS.
52 GRAPHICZ
€0 COLORZ.3.8.18@
7@ REM DRAM BORDER
82 GOSUR €09
1e@ REM INPUT DATA FROM DATA STATEMEMTS
119 REM INTOD ARRAY.
115 READ M:REM NUMBER OF SIDES.
122 DIM M(M, 2>
132 FOR C=1 TO H
142 READ MLC. 1)
S8 HEXT C
160 FOR C=1 TO N
170 RERD M(C.2>
188 HNEXT C
28@ REM DATAR FOR COORDIMATE
205 IIRTR 9
21@ DATA 100,200.512.624,924,624,512, 200, 168
220 DATA 500,460,300, 400,500, 600, 700, 6oa, SO0
30@ REM DRAK POLYGOM
3186 FOR C=1 TO N-1i
328 XB=M(C, 1)
23e YB=M{C.,2)>
340 KE=M{C+1,15
35@ YE=M(C+1.,2)>
36@ DRAW 3,X%B,YB TO XE.YE
370 HEXT C
588 GET A$:IF A$="" THEM 23@
3%@ COLOR 1,3,6,0:0RAFPHIC @:EHD
€02 REM BORDER DRAWING ROUTIHE
612 FOINT 3.8.0
€22 DRAM 3 TN @.1623
630 IRAW 3 TO 1823, 1223
€46 DRAM 2 TD 1023.0
€52 DRAL 3 TO B. 6
€68 RETLIRM

RERDY.

POLYGON 2
DESCRIPTION

To save having to work out the end of line coordinates for each
line of a polygon it is far easier given a regular N sided polygon to
calculate these values within the program. This is done by the
program POLYGON 2 which simply requires the centre of the
polygon, the radius, the angular offset and the number of sides to
the polygon. The program is configured to draw a series of poly-
gons using data from a data table. The five parameters required
to draw each polygon are then used to calculate a table of
coordinates for each of the lines in the polygon, these values are
then stored in the array m(n,2).

RUNNING THE PROGRAM

All the parameters required by the program are stored directly
within the program. The X and Y coordinates of the central axis
around which the shape is rotated is stored as the variables cx
and cy. The number of lines in the shape is stored as variabie n, r
is the radius of the polygon and os is the angular offset. These
values are stored as data statements in lines 300 to 320 (each
line of datastatement holds the data for one polygon). To change
the polygon’s shape, orientation or position then change the
values in the data statements, to add extra polygons then add
further lines of data statement values.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 800
96 matrix for line coordinates and angles
140 get data from data statement for next polygon

180-190 convert angles to radians

200-220 calculate angles for each corner and put in array
300-320 data for drawing three polygons

400-460 calculate line coordinates and put in array
480-610 draw polygon

800-860 border drawing subroutine

54

REM POLYGOH 2

REM skfdkkbErkErss

REM

16 REM PROGRAM TO DRAW M SIDED POLYGOHE
26 REM GIVEW THE CENTRE.RADILS,
22 REM AMD ANGULRR QFFSET.

40 REM

S6 REM SET COLOURS

6@ GRAFHIC 2

78 COLOR 3.3.6.10

&8 REM DRAM BORDER

@ GOSUER 8@0

a5 Z=0

o6 DIM MC19,2),A0185

1@ FREM ROUTIME TO DRAM POLYGON
118 REM INPUT PARAMETERS FROM DATA
120 REM STATEMEMTS AND SET UP MRTRIX ARRAY.
1308 REM

142 REFD CHX,CY.R.N.0S

145 Z=Z+1

15@ Q=H+1

180 AD=2#a/N

190 (2=0%/180%na

200 FCOR C=1 TO H

219 RALCH=C#AD+0S

220 MEXT C

308 DRTA 488, 460,200,8,22.5
310 DRTA €90.,4006,82.3,60

220 DATA ©@B,720,168,5,3€

395 REM

498 REM SET COORDIMARTES

405 REM

419 FOR %=1 TO N

426 MIK, 1 9=CR+RECOSCALCHI D

4726 MO, 2)=CY-R¥SIM(ACK)D

440 MEXT ¥

456 MOH+1,10=M{1,17

460 MOIN+1,20=M01,27

465 REM

470 REM DRAW POLYGOM

475 REM

480 FOR C=1 TO M

490 XB=M{C, 1>

506 YR=MIC. 23

518 AE=M{C+1,15

T2A WE=MIC+1.27

523 DRAL 3,.7#%#<B.YB TO .7#XE.YE
540 HEAT C

550 IFZC3THEN1GO

560 GET A$:IF As="" THEH Sce
570 COLOR 1.5,6,0 GRAPHICE ' END
€16 DS=1:REM DOT ZPACIHG

56

00 Y =

V85 REM
& REM BORDER DRAWING ROUTIME
818 POIMT 3.8.4a
220 DRAKW 2 TO B.1023
3@ DRAM 3 TO 1823,1623
&4a IRAM 3 TO 1022.0
€32 DRAKW 3 TO @.8
868 RETURN

FERDY.

57

RECTANGLE 2
DESCRIPTION

The problem with the program RECTANGLE 1 is that it requires
the coordinates of all four corners. This program will draw
rectangles of any orientation, given the coordinates of two
corners and the length of one side, this is done using a simple
calculation based on Pythagoras’ Theorem to calculate a matrix of
corner coordinates.

RUNNING THE PROGRAM

The program requires the input of five parameter values. The first
two are the X and Y coordinates of the bottom left corner and next
two values are the coordinates of the bottomright corner. The last
value is the length of a side at right angles to the side described by
the pair of coordinates points.

PROGRAM STRUCTURE

35 set up coordinate matrix array

50-60 set colours

80 draw border around screen using subroutine at
600

110-119 input bottom left X, Y coordinates

120-129 input bottom right X, Y coordinates

130-136 input length of perpendicular side

140-295 calculate all corner coordinates of the rectangle

300-400 draw rectangle

600-660 border drawing subroutine

700-760 input data subroutine

800-930 line drawing subroutine

58

OQ%

1 REM RECTAMGLE 2

2 REM smddickirsgdribs o

3 REM

19 REM FROGRAM TC DRAKW A RECTANGLE
2@ REM GIVEM COORDIMATES OF THO CORNERE
28 REM AMD LEMGTH OF DHE SIDE.
25 DIM M(5.2>

40 REM SET COLOURS

5@ GRAFHIC 2

60 COLOR 3.3.&.1@

7¢ REM DRAW BORDER RROUND SCREEM
s@ GOSUE &g

85 REM

ige REM IHWPUT DRTH

118 REM IHPUT ¥1.Y1

111 Z$="":T=3

112 CHRR 13.,2,"72"

113 GOSUR 7es

114 XKi=Z:2¢=""

115 CHAR 18, T,",":T=T+1

116 GOSUB 700

117 ¥Y1=Z:FOR I=1 TO 580@:NEXT 1
118 IF ¥1<@ OR ¥Y1<8 THEN 330

i1 CHAR 19.2," "
126 REM INPUT K2.,Y2

121 Zg="":T=0

122 CHAR 19,2,"7?"

123 GOSUB 766

124 ¥2=2:2¢=""

12% CHAR 19,T,", " T=T+1

126 GOSUB roe

127 wa=Z

128 FOR I=1 TO S@0:MEXT I

129 CHRAR 19.2.," "
13@ REM IMPUT L

131 Z$="":T=5

132 CHRAR 19.2,"7?"

133 GOSUB voe

134 L=Z

135 FOR I=1 TO S@8:'NEWT I

136 CHAR 19.2.," "
148 P=x2-¥1

156 Q=Y2-Y1

166 R=GOR(PHP+Q#0

178 LE=P/R

189 LY=G/R

198 pE=-LY

208 WY=LK

218 MC1,15=K1

26 MLI2,1)=¥2

230 MCS, 1 =H2+0REL

60

240 MC4, 1>=)1+HXHL
25@ MCS, 10=X1

260 M(1,2y=v1

270 M(2,2)=v2

280 M3, 23=vY2+HYHL

290 M(4,2)="71+hvHL

295 M(S,2)=v1

300 REM DRFW RECTANOLE

@5 REM

318 FOR C=1 TO 4

328 RE=M(C, 1)

330 YB=M(C,2)

340 WE=M(C+1,1)

350 YE=M(C+1,2)

268 GOSUB 8o@

378 NEXT C

3608 GOTO 109

390 COLOR 11.3.6,@

460 GRAFHIC @

410 END

60@ REM BORDER DRAWING ROUTIME
605 REM

618 FOINT 3,0,0

€20 IRFW 3 TD 10238

£38 IRAW 3 TO 1823,950

646 DRAW 3 TO ©,55@

658 DRAM 3 TO 2,0

66@ RETURN

&85 REM

708 REM INPUT DATA

785 REM

710 GET A$:IF A$="" THEN 710
720 IF (ASCC(R$)C48 OR ASCC(REIDS7) AMD A$CH"-" THEM 750
730 CHAR 19,T,A$: T=T+1

740 2$=Z$+A%:60TO 710

750 Z=YAL(Z$)

768 RETURN

795 REM

€00 REM LINE DRAWIMG ROUTIME
8¢5 REM

§10 P=NE-XB

820 GO=YE-YE

SE0 R=SRR(PHP+O%E)D

848 LX=P/R

€56 LY=0/R

86¢ FOR I=@ TO R STEP &
E7Q Y=, TH{MB+THLID

60 W=vE4THLY

€56 IF W<@ OR w<@ THEM 520
966 IF X>1823 OR Y3958 THEM 52@
518 FOINT 2,3,%

61

sz2e MEXAT 1
§38 RETURH

READY.

62

CIRCLE
DESCRIPTION

Piotting an ordinary circle with the VIC plus Super Expander is
remarkably easy, using the built-in CIRCLE command, which
allows you to specify the central X and Y coordinates, and also
the radius. This will then plot a complete circle on the screen.
However, for many applications we will not want a full circle,
although we will require full image of the circle to be displayed. In
other words, we want to be able to specify a distance between
the points plotted that make up the circumiference of the circle.
The program CIRCLE does just that, by use of the POINT
command to plot each individual dot of the circumference to a
specified separation. This is the variable DS in the program listing,
line 134,

RUNNING THE PROGRAM

A number of inputs are required to get the program going. In line
110 we input the X and Y coordinates of the centre of the circle,
namely XC and YC, followed in line 120 by the radius RA. Our
fourth input is the separation between the dots as mentioned
earlier, that is the variable DS in line 130. This dot separation is
then converted in line 210 (by multiplying by Pl and dividing by
180) to form the STEP for the FOR NEXT loop in line 230 which
initiates the plotting process. As we know, 2 Pl radians equal
360 degrees, and hence the statement in line 230. Then we just
calculate the distance of the dot in terms of X and Y coordinates
from the centre of the circle, and POINT the point. Line 300 then
sends us back for another run and another circle.

PROGRAM STRUCTURE

60-70 set colours

90 draw broder round screen using subroutine at 400
110 input coordinates of circle centre

120 input circle radius

130 input dot separation

210-330 draw circle
400-460 border drawing routine
500-560 input data subroutine

63

64

1 REM CIRCLE
2 REM #s#ddsdsesddmibmmiioning
3 REM

1@
20
e
4@
Sa
S5
€@
e

79

ga

83

ca

59

196
112
111
112
113
114
115
116
117
118
115
1z0
121
122
123
124
125
126
138
131
132
133
134

s
phcher)

136
195
208
ze3
21a
Z2e
z25a
2409
25a
2e0

Loy
<

REM ROUTIME TO DRAM R CIRCLE

REM SPACING EETHEEM THE DOTS USED
REM TO DRAW THE CIRCLE IS YARIABLE
REM

REJM SET COLOURS

REM

GRAPHIC 2

COLOR 3,3.9.10

REM

REM DRAW BORLER

REM

0SUE 400

REM

REM IHPUT CIRCLE DRAWIMG FRRAMETERS
REM COORDINATES OF CIRCLE CENTRE
Z*"'—" LU T=5

CHAR 19,2, 7"

GOSUR SBn

XC=Z:2%=1"

CHAR 19,T,",":T=T+{

GOSUR So0

YC=Z:FOR I=1 TO S@0:MEXT 1

IF XC<@ OR YC<O@ THEN 3i@
CHAR 19,2," Y
REM CIRCLE RADIUS

2$= ny H T:S

CHAR 19,2,"7"

GOSUE See

RA=2Z

FOR I=1 TO 5@@:NEXT I

CHRR 18,2," "
REM DOT SPACING

2*:: LU T=5

CHAR 19,2, "?"

GOSUE Sem

De=2

FOR I=1 TO 5€@:MEXT I

CHAR 13,2," "
REM

REM DRAW CIRCLE

REM

DES=13%n/180

R=FRA

FOR P=8 TO 2#%q STEP D3
H=RECOSCP)

Y=RESIH(P)

=L TEEANC

,7‘='7'+'7JC

65

275 IF ¥<@ DR vY<0 OR ¥>838 OR X>1@23 THEN 25@
282 POIHT 3.¥.Y

288 NEXT P

Ze0 GOTO 120

218 COLORL,3.6,0

226 GRAFHICE

338 EMD

395 REM

428 REM EORDER IRAWING ROUTIME
405 REM

412 POINT 3,.8.09

428 DRAK 3 TO 16823.0

4%2 DRAW 3 TO 123,357

440 DRAW 2 TO @,559

458 DRAM 3 TO 2.@

462 RETURN

425 REM

5@@ REM IMPUT DATA

585 REM

510 GET A$:IF Af="" THEN 510 .
528 IF (ASCCAZYC48 DR ASC(REIZET) AND AFOOM-" THEN 53¢
52@ CHAR 12, T.R%: T=T+1

540 ZE=Z£+A%:GOTO 510

558 Z=YAL(Z$H

5€2 RETURH

RERDY.

66

ELLIPSE

DESCRIPTION

An ellipse is a circle offset on two sides from the central point in
either the X or the Y direction. Using the routine developed in the
program Circle, together with a couple of additions to handie the
elliptical effect, we can plot an ellipse, or indeed any number of
ellipses, with variable dot spacing. The offsets are specified in
line 140, and determine the degree of ellipse. The variables oX
and QY are used, and obviously if OX is zero we get an ellipse in
the Y direction, and vice versa. Naturally we can give values to
both of these to get a number of interesting effects.

RUNNING THE PROGRAM

In structure this is very similar to the Circle program earlier, but a
couple of major differences are worthy of note. In line 140 we are
asked to input the variables OX and QY to specify the degree of
ellipse. These are subsequently used in our ellipse drawing routine
in lines 240-250 to calculate precisely where our point is to be
plotted. The rest of the program, including the routine to specify
the separation of the dots {lines 210 and 230) is virtually the
same.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
110 input coordinates of ellipse centre

120 input ellipse radius

130 input dot separation

140 input elliptical offsets in X and Y direction

210-360 draw ellipse
400-460 border drawing routine
500-560 data input subroutine

67

%

NBPMT STy

o

*
H

68

1 REM ELLIPSE
2 REM #RR0RRERR AR AR RK

18 REM ROUTINE TO DRAW AN ELLIFSE USING OFFSETS
28 REM SPRCING BETWEEN THE DOTS USED
3@ REM TO DRAW THE ELIPSE 1S VYARIRBLE
46 REM

5@ REM SET COLOURS

S5 REM

€8 GRAPHIC 2

7@ COLOR 3,3,8,10

75 REM |

88 REM DRAW EORDER AROUND SCREEN

85 REM

50 GOSUB 400

95 REM

1@ REM INPUT ELLIPSE DRAWING PARAMETERS
165 REM

118 REM COORDINATES OF ELLIPSE CENTRE
111 Zg="0:T=5 ,
112 CHAR 19,2,47"

113 GOSUB 508

114 XC=Z:zg=no

115 CHAR 19,T,", " : TaT+1

116 GOSUB 508

117 YC=Z:FOR I=1 TO 500:NEXT I

118 IF YC=@ OR XC=@ THEN 350

119 CHAR 19,2," "

120 REM ELLIPSE RADIUS

121 Zg="":T=5

122 CHAR 19,2,"7"

123 GOSUB 508

124 RA=Z]

125 FOR I=$ TO B5@@:NEXT I

126 CHAR 19,2," "

130 REM DOT SPACING

131 Zg="w:Tsx

132 CHAR 19,2, "7"

133 GOUSUE 508

134 DS=Z

135 FOR I=1 TO 50@:NEXT I

136 CHAR 19,2," "

140 REM ELLIPTICAL OFFSETS IN X AMND ¥ AXIS
141 Zg="":T=5

142 CHAR 19,2,"7"

143 GOSUE =0

144 Ow=z:Zg="n

143 CHER 19, LTt iTeTe

146 GOSLUE 5

147 OY=Z

148 FOR I=1 TO S00:MEXT I

143 CHAR 13,2." "
135 REM

202 REM DRAW ELLIPSE

205 REM

21@ Do=DIc¥n/180

228 R=RA

231 FOR P=8 TO 2% STEP DS

235 REM

240 X=R¥COSC(P>*¥0X

250 Y=R&SIMCFI%OY

260 RK=K¥.7+XC

2va Y=Y+YC

275 IF {8 OR ¥<@ OR Y>95@2 THEN 258
280 FOINT 3.X.Y

22@ MEXT P

s@e GOTO 1eg

250 COLOR 1.3,6.0

362 GRAPHIC @

378 EMD

395 REM

4002 REM BORDER DRAMING ROUTINE
405 REM

41@ POINT 3,8.0

420 DRAW 3 TO 1828,0

420 DRAW 3 TO 1@23,950

442 DRAW 3 TO @,950

452 DRAW 3 TO 2.0

460 RETURM

455 REM

568 REM IMPUT DATA

505 FEM

519 GET A£:IF A$="" THEM 510
520 IF (ASCCRA$Y<42 OR RSCCREIDSTY AMD AL THEN 33
520 CHAR 19, T,R%:T=T+1

540 Z#=Z%+A%:GOTO 510

550 Z=YALCZED

568 RETURH

REARDY.

70

ARC 1
DESCRIPTION

The VIC Super Expander command DRAW, while not being with-
out its uses, suffers from a number of limitations. Like the
CIRCLE command, you can only draw complete, filled in lines.
Also, whether we use it in conjunction with the third parameter
(other than X and Y coordinates of the finishing point), namely
the angle through which it must turn, or not, we must always
remember that DRAW will start off from the last point plotted by
CIRCLE, POINT or the previous DRAW statement. In order to
draw an arc from anywhere to anywhere, and to be able to have
user-definable dot spacing, the routines in the program ARC1
were developed.

RUNNING THE PROGRAM

A number of inputs are required. In line 110 we must specify XC
and YC, that is, the centre of the arc. Line 120 allows us to
specify RA, the arc radius, and line 130 lets us input the dot
separation DS. Two further inputs in line 140 contain the crux of
the matter, and give us that much needed flexibility over DRAW,
by allowing us to specify the start and end angles of the arc.
Thus, we are not limited in where we can start drawing. The
drawing routine in lines 250 to 310 is similar to the ones in earlier
programs in this series.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
110 input coordinates of arc centre

120 input arc radius

130 input dot separation

140 input start and end angles for arc

210-360 draw arc
400-460 border drawing routine
500-560 data input subroutine

71

v
- e
R .

0
0
i "

PRttt LT
e .

i

/

X}
Ly
o’

Taee

72

1 REM ARC 1§
2 REM sfkopiorsorsirsionbrinbk s
3 REM

1@
20
e
408
Sa
]
1214
e
7S
8a
=H]
sa

95

168

S REM

ie

110
111
112
113
114
115
116
117
118
119
1z0
121
122
123
124
125
12¢
120
131
132
133
134

I}
136
146
141
142

REM ROUTINE TO DRAM AM ARC

REM SPRCING BETWEEN THE DOTS USED
REM TO DRAW THE RRC 1S VARIRELE
REM

REM SET COLOURS

‘REM

GRAFHIC 2

COLOR 3.3.8.10

REM

REM DRAW EBORDER AROUND SCREEHM

REM

GOSUB 488

REM

REM IMPUT ARC DRAKWING PRARAMETERS
E

REM COORDINATES OF CENTRE OF ARC
2$= " H T=s

CHAR 19,2, "7

GUSUB_5@0

KC=Z:2g="n

CHAR 19,T,", " :T=T+1

GOSUB See

YC=Z:FOR I=1 TO 50@:NEXT 1

IF XC=@ OR YC=@ THEN 350

CHAR 19,2," "
REM ARC RADIUS

2$= we o T=5

CHAR 15,2, 7"

GOSUB See

RA=Z

FOR I=1 TO 500:NEXT I

CHAR 15,2," "
REM BOT SPACING

Z$="0:Tas

CHAR 19,2, "7"

GOSUR See .

DS=2Z

FOR I=1 TO 5@0:NEXT I

CHRR 19.2," "
REM START AND EMD ANGLES FOR ARC
24="":T=5

CHAR 19,2, 7"

143 GOSUER Sog

144
145
146
147

AG=Z 1 2g=""
CHAR 19,T,", " :T=T+1
GOSUB 500

AE=Z

148 FOR I=1 TO S@@:MEXT I

73

143 CHAR 19.2," "
135 REM

2008 REM DRARW ARC

285 REM

219 DS=DS%n /188

220 AS=AS#n/100

238 AE=RE#n/1808

248 R=RA

25@ FOR F=AS TO RE STEF DS

260 X=R#CQSC(P)

270 Y=R¥SINCP?

280 M=.7EX+NRC

29 Y=Yy+¥C

295 IF X<{@ OR ¥<8 OR ¥>395@ THEN 310
300 POINT 3.X,Y

210 HEXT P

3220 GOTO 160

356 COLOR 1,3,€.0

360 GRAPHIC @

378 EMD

395 REM

400 REM EBORDER DRAWIMNG ROUTIME
485 REM

41@ POIMT 3,8.8

420 DRAKM 3 TO ©.950

4%0 DRAM 3 TO 1823.9509

440 DRAW 2 TOD 1@2E.0

450 DRAW 3 TO 8.@

460 RETURN

495 REM

500 REM IMPUT DATA

585 REM

518 GET A$:IF A%="" THEN T10©
520 IF (ASCCA$)<4€ OR ASCCASIOST) AMD AFCO", " THEM 350
550 CHAR 13, T,RF:T=T+1

540 Z$=Z%+A% ' GOTO 518

550 Z=VAL(Z%D

568 RETURN

RERDY.

74

DisK 1
DESCRIPTION

When examining the program CIRCLE, you probably realised that
if you repeated the process again and again, but specifying a
different radius each time, it would be possible to build up a
complete disk rather than just a circle. This is certainly true, but
the time taken would be rather a long one, and you'd probably
get fed up with running through the program time after time.
Consequently, the program DISK 1 takes the drudgery out of the
process by incorporating a couple of new routines to do it all for
you.

RUNNING THE PROGRAM

Again, we have to input a number of variables before we get to
the meat of the program. As before, line 110 allows us to specify
the coordinates of the disk centre, line 120 the disk radius, and
line 130 the dot spacing. In drawing the disk however, we go
through two FOR NEXT loops rather than the usual one. The inner
loop, lines 230 to 290, draws just one circle as we’ve seen
before. The loop in line 220 and 300 then uses the previously
specified dot separation to step up the radius of the circle to draw
another one, until finally we reach the full radius originally input in
line 120.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
110 input coordinates of disk centre

120 input disk radius

130 input dot separation

210-290 draw arc, incorporating:-

230-290 draw circle, and

220-370 step up radius and draw another one
400-460 border drawing routine

500-560 data input subroutine

75

76

1R
R
& R
1@
2@
ae
4@
5@
53
ea
7a
75
a8a

=
par]}

ca

a5

Yl
185
11@
111
112
113
114
115
116
117
118
1135
120
121
122
123
124
125

mn

EM DISK 1

EM sk ior gl b oo

EM

REM ROUTIME TO IRAW A DISK

REM SPRCING BETWEEM THE DOTS USED
REM TO DRAW THE DISK IS VARIABLE
REM

REM SET COLGURS

REM

GRAFHIC 2

COLOR 5.3.8.1@

REM

REM DRALI BORDER RROUND SCREEN
REM

GOSUE 4@

REM

REM IMPUT DISK DRAWING PRRAMETERS

REM

REM COORD'INATES OF CENTRE OF DISK

2$= nn 4 T=5

CHAR 19,2, "7"

GOSUE 500

KC=Z:zg="n

CHRR 18,T,",":T=T4{

GOSUE Sie@

YC=Z:FOR I=1 TO 5@0:NEXT I
IF XC=B OR ¥C=8 THEN 352
CHAR 19,2, " "
REM DISK RADIUS

Zga"":T=g

CHAR 19,2, "7"

GOSUB Sea

RA=Z

FOR I=1 TO S@0:NEXT I

126 CHAR 19,2." "

138
13
132

pup
IGIC

134
135
13¢
195
260
263
21m
22a
220
24a
258

REM DOT SPACIHG
Zg="": T

CHAR 15,2, "7"

GOSUB So@

FOR I=1 TO S@@:MEXT I

CHAR 19,2, " "
REM

REM DRAW DISK

REM

D=DS#m./ 160

FOR R=D% T0O RA STEP IS

FOR P=@ TO 2#n STEF D#(48/R)
HRFCOS (P

W=R¥SINCF)

77

260 K=, 7%X+xC

Zve Y=Y+YC

28m IF K<@ OR _Y<8 OR Y>958 THEH 308
298 FOINT 3,K.Y

300 MEXT P

310 MEXT R

220 GOTO 100

350 COLOR 1,3,6.,@

2¢@ GRAFHIC @

37@ END

285 REM

400 REM EORDER DRAWIMG ROUTINE
4@5 REM

4160 FOINT 3.0.0

428 DRAKW 3 TO ©,950

430 DRAW 3 TO 16@23,350
442 DRAW 3 TO 1@23.@
470 DRAW 2 TO 8.8

4608 RETURHN

495 REM

508 REM IMPUT DRTH

565 REM

510 GET R$:IF R$="" THEM 510

526 IF (ASCCA$Y{48 OR ASCCA$IZST) AND ASLO"." THEMW 352
53@ CHAR 1S, T,A$:T=T+1

540 Z#=I3+A¥:GOTO 5109

550 Z=VRL(Z%)

568 RETURM

READY.

78

SEGMENT
DESCRIPTION

Although DRAW allows one to draw an arc, it does not allow.one
to draw an arc with variable dot spacing. By drawing various
circles to variable dot spacing, a disk with the same dot spacing
can be plotted. Combining both of these routines resulted in the
program Segment, presented here. Using this program we can
draw a disk segment, again with the spacing between the dots
defined by an input (line 130), and moreover we can make that
segment as large, or as small, as we like. As you can see from the
illustration, combining a number of runs of the program enables
us to link different disk segments together.

RUNNING THE PROGRAM

As usual, line 110 lets us input the coordinates of the arc centre,
120 the arc radius, and 130 the spacing between the dots. In line
140 we input the start and end angles for the arc. The program
following is then fairly straightforward. In lines 250 to 310 we
plot just one arc, using the POINT command for each point of the
arc. The outer FOR NEXT loop, in lines 240 and 320, uses the dot
separation to increase the radius of the arc, and then the inner
loop plots out another arc. This continues until we reach the final
radius of the arc, RA, as input in line 120, which gives us our final
arc and completes the segment. By specifying a different dot
spacing we can build up a whole series of arcs joined onto each
other.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 400
110 input central coordinates of arc
120 input radius of arc

130 input dot spacing

140 input start and end angles for arc

240,320 outer drawing routine, incorporating:
250-370 individual arc drawing routine
400-460 border drawing subroutine

500-560 data input subroutine

79

et
l‘: 1] l‘l‘l.

SRRSO

80

1 REM SEGMENT

2 REM s#ssshpbbsbprbpiiys

3 REM

16 REM ROUTINE TO DRAW R DISK SEGMENT

ze
3@
40

REM SPRCING BETWEEN THE DOTS USED
REM TO DRAW THE SEGMENT IS YRRIAELE
REM

5@ REM SET COLOURS

£
78

GRAPHIC 2
COLOR 3,3,0,10

7S REM
€@ REM DRAK BORUER AROUND SCREEM
85 REM

sa

95

100
15
110
i11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
136
131
122
133
134
135
136
140
141
142
143
144
143
14€
147
148
148
195

GOSUR 4o
REM

REM INPUT SEGMENT DRAWING PARAMETERS
REM

REM COORDINATES OF SEGMENT CENTRE
2$= na H T=5

CHAR 13,2, "7"

GOSUB 508

XC=Z:Zg=""

CHAR 13,T,",":T=T+}

GOSUB 508

YC=Z:FOR I=1 TO 560:NEXT I

IF %C=@ OR ¥C=@ THEN 350

CHAR 19,2, v
REM SEGMENT RADIUS

Z$=ll n H T=5

CHAR 19,2,"7"

GOSUB 500

RA=Z

FOR 1=1 TO S@0:NEXT I

CHAR 15,2, "
REM DOT SPACING

zzgll 1 4 T=5

CHFAR 19,2,v7"

GOSUB See

DS=Z A

FOR I={ TO %@@:NEXT I

CHAR 19,2,* "
REM START AND END ANGLES FOR SEGMENT
2$=Il 7] ¢ T=5

CHAR 18,2, 7"

GOSUB 500

AS=Z:Zg=""

CHAR 19,T,",":T=T+1

GOSUB 560

AE=Z

FOR I=1 TO 5@@:NEXT I

CHAR 19,2," "
REM

81

200 REM DRAM SEGMEHT

205 REM

212 I=DT#¥n /130

2268 AS=AS#nr/188

250 RE=FRE#n/1806

246 FOR R=DS TO RA STEP D3

25@ FOR P=RS TO AE STEP D%(40/R>
26@ K=R#COS(P>

278 Y=R#¥SIMCPO

260 M=.T#E+HHC

298 Y=Y+YC

233 IF x<® OR Y<{@ OR Y>%50 THEN 310
280 POINT 3,X,Y

318 MEXT P

320 NEXT R

338 GOTO 1@o

356 COLOR 1,3.6.0

36@ GRAPHIC B

378 END

393 REM

48@ REM BORDER DRAMWIMG ROUTIME
485 REM

4190 POINT 3.0.0

420 DRAW 3 TO 9,958
430 DRAW 2 TO 1623, 350
440 IRAK 3 TO 1823,8
436 DRAW 3 TO @.0

468 RETURN

495 REM

586 REM INPUT DATR

505 REM

S1@ GET AL:'IF Ag="" THEN 10

520 IF C(ASCC(A£><48 DR ASCCAREFISSP) AMD AFCO"." THEN &
538 CHAR 19, T.A%:T=T+1

540 Z¢=Z$+A$:G0TO 510

0S@ Z=VAL(ZE)

SE@ RETURN

RERTY.

82

PIECHART
DESCRIPTION

The culmination of all the plotting routines for circles, arcs, and
disks resuits in the program PIECHART. Of use in business,
educational, and indeed just about any computing environment,
piecharts enable us to show clearly and (quite strikingly) visually
all manner of different data. We mentioned when describing the
program Segment, that by building up various runs through the
program it was possible to have different segments next to each
other. This program takes the chore out of that exercise, by
assigning various variables first of all, and then using DATA
statements to generate the necessary information. Obviously,
this program will be of most use to you when using your own
data.

RUNNING THE PROGRAM

This program differs from the earlier Segment one by having no
input statements. Instead, we define the variables XC and YC to
be the central coordinates in line 110, and the variable RA to be
the radius in line 120. Needless to say you can change these to
suit your own requirements. The data for making up the different
arc segments is contained in lines 500 to 560. In order, we have
the dot separation, the start angle for the segment, and the end
angle. Again, these can be whatever you require. By reading
these in lines 130 and 140, we then follow the segment plotting
routine in lines 240 to 320. When line 150 detects a zero dot
separation (as read in from line 540) the program comes to a halt.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 400

110 define coordinates of centre of piechart
120 define radius of piechart

130 READ dot spacing

140 READ start and end angles of segment
150 if spacing of zero, then STOP
210-320 segment drawing routine

330 back for more data

400-460 border drawing subroutine
500-540 data for piechart

83

84

1R
2R
3R
1@
zZa
ce
48
59
€9
76
7S
£0
ca
95
100
163
iie
1208

EM PIECHRRT

EM Sk o A oh b A

EM

REM ROUTINE TO DRAK A PIECHART USIHG

REM YARIAELE SPACIMG FETKWEEN THE DOTS

REM TO DIFFERENTIARTE BETWEEN SEGMEHTE.

REM

REM SET COLOURS

GRAFHIC 2

COLOR 3.3.92.10

REM

REM DRAI BORDER

GOSUR 4@0

REM
REM GET PIECHART DATR FROM DRTA TRELES ~ LIME S00+
REM
XC=512:YC=J12:REM COORDINATES OF DISK CENTRE
RA=380:REM DISK RADIUS

138 READ D3:REM DOT SPACIMNG

140
150
193
208
205
210
220
230
240
250
260
270
z8a
290
gclale]
310
320
336
&oe
360
37e
338
395

406

485 R

410
420
438
440
450
460
495

READ AS,AE'REM START AMD END AMOLES FOR SEGMENT
IF DS=0 THEN 358

REM

REM DRAW SEGMENT

REM

D=DS*n/180

RE=AS¥r /180

AE=RE#r/180

FOR R=DS TU RA STEP D5

FOR P=AZ TO RE STEP D#<(48/R)
X=R¥COS(P)

Y=R¥SINCP)

X= . 7HR+RC

Y=Y+4C

POINT 3.%.¥

MEXT P

NE¥T R

GOTO 1ea

GETAS: IFA$=""THEN350

COLOR 1,3.,€.@

GRAPHIC B

EHD

REM

REM BORDER DRAWIMG ROUTIHE
Et

FOINT 3.0.0

DREAW 3 TO 1@23.0
DRAK 3 TO 1822.1623
DRAW 3 TO @, 1823
DRAW 3 TO 8,8
RETLRHN

REM

85

S8 DATA S9.1,74
S16 DATA 206.71,20@
526 DATA 38,281,300
S539 DATA 18,381,360
549 DATA 0.9.0

RERDY.

86

.
=

ne
.

.
e

s
. e
T e s

. - . =
.
e
..

.

Sfioiie ‘.
.x‘\@g
.

i

-
s et
i

Choiieliiial S Sh i b
2 g«@nﬁ«h i
ot b e e e
.
S m e e
Q\\a\s\a\n\,@m‘w«m@«

o .
e
Sl e e

e

osCiEata i izl s s

e i Be Tl
o S

m

-

w&%wmwm.mww

.

-

o

GRAPH

DESCRIPTION

Each character position is made up of an 8 x 8 dot matrix, which
means that we can plot points to a resolution of 176 in the X axis
and 176 in the Y axis. The two programs GRAPH and GRAPH2
use the full resolution of the screen to plot respectively a graph of
SIN (X) and SIN (X) with COS (X), using the VIC commands
POINT, and DEF FN to define the function to be plotted. The
programs are identical except for an additional routine in GRAPH2
to plot COS (X), and a couple of lines to identify the function and
display a title.

RUNNING THE PROGRAM

The INPUTting of variables is not required in either program, as
we are simply taking the function a(x) to represent sin (x30)60 in
the program GRAPH, and in addition b(x) to represent cos
(x30)60 in the program GRAPH2. These are defined in line 130 in
the former program, and lines 130-131 in the latter. It then runs
through lines 200 to 330 to plot out the actual function. These
routines could obviously be incorporated in further programs to
plot different functions, just by altering the definitions in lines
130-131.

PROGRAM STRUCTURE

50-60 set colours
90 draw border around screen using subroutine at 400
130 define function(s) to be plotted

150-180 draw Y axis and label graph(s)
200-330 graph plotting routine
400-460 border drawing subroutine

88

GRAPH OF SIN(X)

Q‘\

s N \
s X 5 s kN
Y : s
Y hY S kY
k "'. i S 5,
% N\ H
\ 180 350
- <
y S ¢
" \ F, é
kY A S s
Y N 0
COS 13)% x_//g

89

i REM GRAPH

2 REM sddksaickbasdicionkhiorm s
3 REM

18 REM PROGRAM TO PLOT M THE GRAPH OF A FUNCTION
20 RENM

38 REM SET COLOURS

48 REM

56 GRAPHIC 2

66 COLOR 3,3.0.10

70 REM

88 REM DRAW BORDER

85 REM

$@ GOSUB 400

95 REM

108 REM DEFINE FUNCTION TO BE PLOTTED
185 RENM

110 REM THE NUMERICAL VALUES IN THE EXAMPLE FARE
120 REM USED TO SCALE THE PLOT TO RERSONRABLE
125 REM DIMENSIOHNS

130 DEF FNRCXI=SINCX/120)#400
135 REM

149 REM DRAW Y AXIS AT B

143 RENM

158 POINT 3,0.512

160 DRAW 3 TO 1@23,512

180 CHAR 1.,Z,"GRAPH OF SINCX)"
185 REM

150 REM PLOT GRAPH

195 REM

200 FOR ¥=0 TO 1@23

210 Y=FHNACX?

220 POINT 3.X.512-Y

230 NEXT X

300 GETR$:IFR%=""THEN3Q0

316 COLOR 1,3.6.,0

3208 GRAPHIC ©

330 EMD

395 RENW

480 REM BORDER DRAWIMG ROUTIMNE
465 REM

410 POINT 3.0.0

420 DRAW 3 TD ©.10823

430 DRAM 3 TO 1023.1023

44@ DRAW 3 TD 1923.86

458 DRAW 2 TO 6.8

468 RETURM

1 REM GRAPH 2z
2 REM #ds#kesdsmbirkassiobny
3 REM

90

REM PROGRAM TO PLOT M THE GRAPH OF THO FUNCTIONS
REM
REM SET COLOURS
REM
GRAPHIC 2
COLOR 3.3.8,16@
REM
REM DRAW BORDER
REM
GOSUE 400
REM
REM DEFINE FUNCTIOWM TO BE PLOTTED
REM
REM THE NUMERICAL VALUES IM THE EXAMPLE RRE
REM USED TO SCALE THE PLOT TD RERZONRBLE

125 REM DIMENSIONS

DEF FHRCXI=SINC(H/1285%400
DEF FNBC(X>=COS{K/120.%40@
REM

REM DRAW Y RAXIS AT ©
REM

POINT 3,08.3512

DRAW 3 TO 1023,512
CHAR 2,6, "SIN(K>"
CHAR 18,1, "COS{K>"
REM

REM PLOT GRAFH

REM

FOR X=0 TO 10823
Y=FNACKD

POINT 3,X,512-Y
Y=FNB(X)

POINT 3.X,512-Y
NEXT ¥

CHAR 11.,8,"@"

CHAR 11.,€.,"188"

CHAR 11,13,"3€0"
GETAS: IFA$=""THEN300
COLOR 1.,3.6.0
GRAFHIC @

EMD

REM

REM BORDER DRAMING ROUTINE
REM

POINT 3.0.8

LRAW 3 TO @, 1823
DRAW .3 TO 1823, 1623
DrRAW 3 TO 1823,0
DRAW 3 TO @.@
RETURM

91

3D GRAPH
DESCRIPTION

Building on from the routines for plotting two dimensional
functions, we find that it is relatively easy to design a program for
plotting in three dimensions. The program labelied 3D Graph does
just that. Although we are relying on the same VIC Super
Expander command POINT, our routine for plotting the function
is, of necessity, rather more complicated this time, as we are
trying to emulate a three dimensional image on what is, after all, a
two dimensional screen. Of special interest in this routine is the
double IF statement in line 310, which performs a
straightforward RETURN depending on the values of the variables
P and Z.

RUNNING THE PROGRAM

No variables are INPUT in this program, as our function is defined
in line 150, and the area to be plotted in is determined by the
scale given to X in line 220. This in turn determines the scale of Y
to be plotted, by line 260. Line 270, the start of the inner of our
two plotting loops, plots all the points on the Y axis for the value
of X in the outer loop, which commences at line 220. We then
move onto the next point on the X axis, and plot all the Y values
there, and so on. By changing the definition in line 150 we can
plot out a whole series of different functions.

PROGRAM STRUCTURE

60-70 set colours
90 draw border round screen using subroutine at 400
150 define function to be plotted

210-380 plotting routine
390-393 program termination
400-460 border drawing subroutine

92

1 REM 3D GRAFH
3 REM
18 REM THIS ROUTIME PLOTS THE GRAPH OF A

93

20

ze

4@

S0

60

7a

e

ga

95

100
183
110
113
1z@
150
195
200
205
210
220
236
240
250
260
270
zea
29a
293
306
310
32a
325
330
340
359
€0
378
388
3%0
391
392
393
335
400
405
410
420
430
440
45a
4€0

94

REM FUMCTION IN 3 DIMEMSIONS
REM

REM

REM SET COLOURS

GRAPHIC 2

COLOR 3,3.0.10

REM DRAW BOURDER AROUND SCREEMN
GOSUEB 408

REM

REM DEFIME FUNCTIOM TO EE PLOTTED
REM

REM THE FUNCTIOM IS CHAMGED BY
REM ALTERING THE COWTEWTS OF LIMNE 15@
REM

DEF FHACZ)=90%EXP(=<Z#Z/668)
REM

REM PLOT GRAPH

REM

K=6&

FOR X=-102 TO © STEF 1

L=8

P=1

Z1=0

Yi=K#INT(SQR 18000 -X#A) /KD

FOR ¥=Y1 TO -%¥1 STEP -K ,
Z=INT’88+FNHfSQR<Y#X+V#?>>~ 7O7106%¥Y)
IF Z<L THEHW 33@

GOSUB 380

L=Z

IF P=@ THEN GOSUB 38@:IF Z=21 THEN GOSUE 3B
POINT 3,.7%5#X+512, 1023~0%2
POINT 3,512~.7%5%X, 1023~-0%Z

IF P=8 THEN Zi=Z

P=0

MNEXT ¥

NEXT ¥

GOTO 350

RETURN

GETR%: IFA$=""THEN25@

COLOR 1.3,6.0

GRAFHIC &

END

REM

REM BORDER DRAWING ROUTINE
REM

POINT 3.8.0

DRAW 3 TO 1823.0@

DRAW 3 TO 18283,1823

DRAM 3 TO @,1@23

DRAW & TO 8.8

PETURH

INTERPOLATE
DESCRIPTION

Determining a set of data is all very well, but it is the interpolation
of that data that produces the all important results. One common
method doing this is to take the data and turn it into points on a
graph, and then perform the interpolation between those points.
The program “‘Interpolate’’ does that, by assuming that you
already have your data in the form of X, Y co-ordinates (here we
store them as data statements in line 180), and plotting the
appropriate point out within a defined area (lines 220 to 230
define the top and bottom of the Y axis and left and right of the X
axis), before finally ‘joining up’ the points in whatever form you
desire (see Running the Program). You could quite easily
incorporate your own data into this program simply by changing
the data statements in line 180.

RUNNING THE PROGRAM

The main bulk of the work is done a) by the line 180, which stores
the data as X, Y co-ordinates, and b) line 200, which determines
which point we start at (here it is the first one), which one we
finish at (here it is the twelfth), and which points we interpolate
between (here it is every one, although by changing the variable
SP in line 200 we could easily take every other point, for
instance). Once we've calculated the scaling factors in lines 410
to 490, and turned these into point increments in lines 510 and
520, we plot the actual point in line 640, and the line between
each point by the routine in lines 670-730.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at
1000

110-160 read and store the data

180-181 data stored as X, Y co-ordinate

200 determine start and finish points, and
separation

220-230 determine position and dimensions of graph on
screen

310-380 draw border round graph, and label graph

410-490 determine scaling factors

95

510-520 convert scaling factors to point increments
610-720 point and line drawing routine
1000-1060 border drawing routine

INTERPOLRTED GRAPH

96

1 REM INTERPOLATE

2 REM kdssdddbdmhhicrksmbbb s

3 REM

1@ REM PROGRAM TO DRAW A GRAPH BY IMTERFOLATING
2@ REM A SET OF POIMTS STORED RS DATR STATEMEWTS I
3@ REM LINE 1s@.

45 REM

58 REM SET COLOURS

55 REM

&0 GRAFHIC 2

70 COLOR 3,3.8.10

79 REM

€@ REM DRAW BORDER RARDUND SCREEM

85 REM

90 GOSUBR 10098

95 REM

168 REM IMITIALISE DATA

185 REM

110 DIM K125

120 DIM Y(125

130 FOR I=1 TO 12

148 RERD X{I>

1@ RERD ¥(I>

160 NEXT I

165 REM

170 REM DATA STORED RS ¥ AND ¥ COORDINATE
175 REM

1868 DATA1,10.2,25,3,30,4.20.5,40,6,30

181 DATA 7.502.,8,20,9,25,10,%0.11,308,12,20
185 REM

1980 REM MIN DIMENSIOM =1, MAX =12, SEPERATION =1
1933 REM

200 DN=1:DX=12:SP=1

205 REM

218 REM POSITION AND DIMENSIONS OF GRAPH OM SCREEN
215 REM

220 XL=75:XR=355

230 YB=500:YT=460

295 REM

368 REM DRAK BORDER AROUMD GRAFPH

385 REM

318 POINT 3,XR+10,YB+16

320 DRAM 3 TO XR+10.%¥T-18

33@ DRAW 3 TO XL-10,YT~1@

348 DRAW 3 TD XL-1@,%B+1i@

3358 DRAW 3 TO XR+10,YB+10

335 XI=(KR-KL)>/{D¥~DM>

360 FOR K=XL TO XR STEP XI

363 FOR R=10 TO 20

378 POINT 3,%,YE+R

G735 MEXT AIMEXKT X

97

38@ CHAR 1.1, "INTERFOLATED BRAFRH"
395 REM

460 REM CALCULATE SCALIHG FRCTORS
425 REM

418 Yi=-1poooag

420 Y2=1000000

430 nl=¥Y1:K2=Y2

44@ FOR I=DHM TO DX STEP &P
450 IF Y1<YC(I> THEM Yi=Y(IDD
460 IF Y2>Y(I> THEN wa=Yy{l>
478 IF XK1<KC(ID THEHW Xi=X(ID
480 IF X2OK{I> THEN X2=X(I)
4580 NEXT 1

495 REM

580 REM COMVERT SCARLING FACTORS IMTO POIMT
505 REM INCREMEMTSE

510 A= (KR~XLIA(K1-K2)

528 B=(YE-YT)/(Y¥Yi-Y2)

595 REM

€80 REM PLOT GRRPH

605 REM

610 FOR I=DN TO I STEP SP
620 X=(XL+(ACID-K2O#R)

€38 Y=(YB-(Y(I>-Y2>%B)

660 POINT 3.¥%.Y

670 Q=I+SP

€392 IF Q>DX THEN 500

€20 R=CRL+(RCQI-K20%[7

708 Y=(YB-(Y(Q)-Y2O#B)

710 DRAW 3 TO X.¥

720 NEXT 1

500 GETA#$: IFR%$=""THENS2Y
¢i@ COLOR 1,3.€.0

920 CRAPHIC ©

938 END

1900 REM DRAW EORDER ARQUND SCREEHM
1825 REM

1@1@ POIMT 3.0.0

1626 DRAW 3 TO @,1023

1638 DRAM 3 TO 1@23,1023
10408 DRAW 2 TO 1623.0

1652 DRAW 3 TO 0.©

1068 RETURHM

READY.

98

o

.
S

=

-

.

ainan

- -

Sotim

-
P

eiehe

.

o

L
e
e

.
SeiEes e
.
.

Sl e
e
st i

. b
S
Eemvl e

.
.

. 5

. -
o M@%m&&“&.\; .

e
ot \};Z

o

e

-

o

S
e

-
.
o 5153'5;;43

e
P
i

o
.
.

s aetess

-
-
. SEEEREE

- e
, .
S i

.

. .
.

L

-

-
o
.
.
o

o

-
.

.

S
.

s
Sl

i e i
.

e
L
*{‘t\ik:‘ﬁkm‘;mﬁm
x%}*@
.
o r}}§
S rSSb el et e
..
.
-
e

e asue e
o
e
.
.
o
e

L
e
.

S

e

S

s
L
-
SEsenl s as o

o

i
o

o

e
-
TRl

HI-RES CURSOR
DESCRIPTION

Many of the arcade games about at present require the
movement of some kind of ‘sight’ around the screen, to get you
to the right position before firing. Similarly, a routine to move a
sight, or indeed a cursor over the screen, would have many uses
in plotting, design, and graphic programs generally. The two
programs here provide just such a routine, but achieved in slightly
different manners. What they do have in common is the method
of moving the cursor (here it is a cross) about, which uses the
keys 5, 6, 7 and 8 in the following way:-

5~——¥-—08

A

Thus, pressing the 8 key would move the cursor up, etc. This
routine lies in lines 210 to 260. The two programs differ in that
a) the cursor is designed differently in each one, and b) the first
program erases whatever screen contents the cursor passes
over: the second one doesn’t.

RUNNING THE PROGRAM HI-RES CURSOR

Having drawn our border around the screen, the program
positions the cursor at the X, Y coordinate of 24,24: and sets the
increment between cursor movements (the variable S inline 120)
to be 6. The program then simply waits until you press the
appropriate key, increases or decreases X or Y accordingly, and
then checks to see whether you are still within the screen
boundary. If you are, it erases the previous cursor, draws a new
one, and then awaits the pressing of another key.

PROGRAM STRUCTURE FOR HI-RES CURSOR

60-70 set colour

90 draw border round screen using subroutine at 600
110-120 set up parameters

210-260 check for key press

310-340 check if within boundary

410-440 erase previous cursor

460-490 draw new cursor

510 back to check for key press

600-660 border drawing subroutine

100

RUNNING THE PROGRAM HI-RES CURSOR 2

This follows roughly the same lines as Hi-Res Cursor, although
our cursor is now defined in data statements contained in lines
150-170, and stored in the array C (5,5). This ‘cursor’ can now
be anything you like, simply by changing the data statements.
We plot the position of the cursor in lines 610-680. However, the
point of this program is that we do NOT erase the screen
contents, so the routine from lines 410 to 480 erases the cursor
but then does an INVERSE on what has just gone, thus restoring
the original screen display. Before plotting the cursor again we
must save the screen contents into our array M(5,5), and this is
performed by the function in lines 510 to 550, using the VIC
command RDOT. This tells us what colour a certain position is,
and we use this array again when going back to erase the cursor
and re-trace the screen contents.

Different keys are used for cursor movement:
B: F3
6: F7
7: F1
8: F5

PROGRAM STRUCTURE FOR HI-RES CURSOR 2

60-70 set colours

90 fill the entire screen with characters

105-110 set up parameters

120-170 define ‘cursor’ and read data statements
210-260 wait for appropriate key press

310-345 check if within boundary

410-480 erase previous cursor and restore screen contents
510-550 save screen contents

610-680 plot new cursor

910 go back and wait for another key to be pressed

101

1R
2 R

EM HI-RES CURSOR
EM dHoop AR OO A A

3 REM

18
206
30
40
1%
€0
70
75
=10]
es
sa
93
100
105
110
120
130
199
200
2085
210
215
228
258
240
256

REM PROGRAM TO MOVE R HIGH RESOLUTION CURSOR
REM ABOUT THE SCREEN UNDER CONTROL OF THE
REM KEYBORRD
REM
REM SET COLOURS

GRAPHIC 2

COLOR 3.,3.@.3

REM

RE: DRAW BORDER RROUND SCREEM

R
GOSUB 600
REM

REM SET UP PRRAMETERS

REM

X=24 '¥Y=24 :REM START POSITION

S$=6:REM CURSOR MOYEMENT IMCREMENTS

GOTO 450

REM

REM INPUT CURSOR MOVEMENT FROM KEYEQRRD
REM

A=FPEEK(137)

K=K ' Y=Y

IF A=2 THEM K=¥-3:0G0TO 398

IF A=58 THEN Y=Y+8:00T0 2o

IF A=3 THEN Y=Y-3:G0OTOQ 366

IF A=53 THEN X=X+Z'GOTO368

102

2€E8
295
3a0
305
310
328
330
340
355
408
4035
410
4206
4306
440
445
450
455
460
47@
43808
490
493
700
583
Si0
595
€00
€83
€18
620
£30
€40
650
660

GO0TO 210

REM

REM CHECK CURSOR WITHIN BOUNDS
REM

IF X{(24 THEM X=24
IF ¥>993 THEN ¥=333
IF Y{24 THEN Y=24
IF ¥>993 THEM Y=959
REM

REM ERASE PREVIOUS CURSOR
REM

POINT 4,Ke-12,vY8
DRAW 4 TO %0+12,Y0
POINT 4,X0,%Y@-12
DRAW 4 TO X8.Y@+12
REM

REM PLOT MEW CURSOR
REM

FOINT 3,X-12.%

DRAW 3 TO K+12,%
POINT 3.X,¥-12

DRAW 3 TO X,Y+12
REM

REM DO RGRIN

REM

GOTO 210

REM

REM DRRW BORDER ARDUND SCREEM
REM

POINT 3.@.0

DRAW 3 TO @.1823
DRAW 3 TO 1823, 1823
DRAW 3 TO 1023,0
DRAW 3 TO B.0
RETURN

RERDY.

N B D) =)

DR DD

REM HI-RES CLURSOR 2
REM ®eddsdspsdmbhs s dpsppon

REM

REM PROGRAM TO MOYE R HINH RESOLUTION CURSOR AEOUT
REM THE SCREEM UMDER COMTROL OF THE KEYEQARRD.
REM THE CLIRZOR DOES MOT ERRSE EWISTIMNG SCREEM
FEM DISPLAYS.

REM

REM SET COLOURS

GRAPHIC 2

COLOR 2.3.8.3

103

REM
A REM
REM
FOR I=0 TO 13

FOR J=8 TO 13

CHAR J.I."a"

HEXT J

MEXT 1

REM

REM ZET LIP PARAMETERS
#=35:Y=T:REM STRRT POSITION
S=3:'REM CURSOR MOVEMEMT

28 DIM C<5,55,M(5.5)

125 FOR I=1 TO &
120 FOR J=1 TO §

139 RERAD CCJ,15
140 MEXT

FILL SCREEM MWITH CHARACTERS

D WD WD LY LD D O CD g
AP A

A A s
W) e 9 &) ¢
[IUNY

145
152
155
162
165
179
122
195
202
2035
210

MEXT
DATA
DATA
DATA
DATA
DATA
GOTO
REM

REM IMPUT CURSOR MOYEMEMT FROM KEYBOARRD

REM

~

. A A s A

-
L

- -

-

BRO-II~G

Ve -~ ~
QRO

A=PEEK (197>

215
229
2309
240
250
260
235

XB=¥ 1 YB="

IF R=47 THEM
IF A=63 THEN
IF A=39%9 THEM
IF A=%5 THENM
GOTO 210

REM

FEM CHECK CURSOR WITHIM BOUMNDS

X=X-5:00T0 390
Y="+S:00TO 300
w=1y-5:60T0 390
K=+ 1 GOTO300

300
205
a1a
300
330
340
395
400
405
410
420
439
442
445
450
455

104

REM

IF K{E THEN K=5

IF ¥>163 THEN X=16%

IF Y5 THEH v=%

IF W>165 THEN Y=16%

REM

REM ERASE PREYIOUS CURSOR

REM

FOR I=-2 TO 2
FOR J=-2 TO 2
IF MCJ4+3, 143028 THEM 482
POINT 3, (J+X8)46, (I+Y0#E

REM
GOTO
REM

470

FOINT 4, (J+MAMHE, (T4700%E

470 MEXKT J

428 MEXT 1

125 REM

02 PEM ZAYE SCREEHM COMTEMTS

]
a
3

NN ANT T ARG AL
PRV RV R N R AV I IR NS IR
RN RN AR R DD R

oy
e B
AN]

6352
£
£72
€20
225
2029
olsta]
219

REM
FOR I=-2 TN 2

FOR J=-2 TO 2

MOT4D, T+2Y=ROOTC CT4MIME, ¢ T+ IHED
MEXT J

MEWT 1

FEM _

FEM FLOT MEM CURSOR

REM

FOR I=-2 TO 2

FOR J=-2 TO 2

IF CCI+3,1+42)=0 THEM 660

A FOIHT 3, (X+TIHE, (W+1I%6

GOTO 672

FOINT 4. CX+T0%E6, (1+Y2¥6
MEXT .J

MEXT I

REM

REM DO AGAIM

REM

ooTo 219

RERDY.

105

CHARACTER BUILDING
DESCRIPTION

Although there are numerous different graphics characters on the
VIC, you may still want to define your own characters at times.
This is easily done using the built-in character generator. The
following program enables you to edit the existing characters
using the cursor control keys. Note that this program will not run
with the Super Expander cartridge in place.

The program is separated into two stages: Choosing the character
You want to change, and editing that character.

RUNNING THE PROGRAM

To get a user defined character you must first move the character
generator from the character generator ROM into the top end of
RAM. Then the area of RAM being used must be protected by
decreasing the end of memory pointer, as in lines 4-270. See the
section on Hi-res for more information.

Having edited the character, you may return to see what it looks
like, then go back and save it as a data statement. Or you may
save it as a data statement as it is. Line 3000 is an example of
how the data statement is formatted; the first value is the
memory location and the next eight values are the values to go
into memory from that location onwards. When you have finish-
ed editing, you can delete the rest of the program and have data
that can be used in other programs.

PROGRAM STRUCTURE

4-270 initialise program by moving generator ROM into
RAM
300 set line no. for data statements

330-340 define functions for screen poke location and value
for character

360-390 print up grid for new char. option

400-480 wait for input from keyboard

510-610 cursor control options

106

710-770

810-840

1010-1170
1210-1300
1510-1550
1610-1700
1810-1910
2010-2160

3000

define new character options

review character set options

display character set and options

display edit options

restore normal VIC operation mode and end
update edited character into character set
display character for editing in an 8x8 grid

add data statement on to end of program and re-
run

example data statement

107

1 REM CHRRACTER BUILDING

2 REM $ bbb sk on o

3 REM

4 POKESE,PEEK(S6)-2

1202 REM PET BEMELUX

11@ REM EXCHAMGE

128 REM NETHERLANDSZ

125 REM

132 POKE 36879.42

140 PRINT"Xi¥¢ CHARACTER BUILDING #"
152 POKE S@0.9

160 RUN 170

178 CS=2TeX¢PEEK{S2)+PEEK{(S1)

182 FOR I=CS TO CS+5114

196 POKE I.PEEK(32763+I~CS>

200 HEXT I

218 PRINT"S RUN 288"

2228 PRIMT"RUN"

232 POKE 198,53

240 POKE €31,19

278 POKE 632,13

2¢@ POKE 633,13

270 POKE 56, PEEK(SE€>+2:'END

280 S=7€60:CL=22

290 CE=25C#PEEK(S25+PEEK(S1)

308 CR=0:LN=3000+FPEEK (500>

316 P=12:BG=1:BR=1

322 POKE 36879,42

330 DEFFNRA(XX)=S+R¥CL+C:REM SCREEN POKE LOCATION
34@ DEFFNB(XX)>=8%R+C:REM SCREEM POKE YALUE FOR CHAR
350 GOTO 1600

360 PRINT"D®":0B0SUR 1200

370 PRINT"3";:FOR I=0 TO 7

380 PRIMT"........"

320 MEXT I:F=0

408 PRIMT"S" :R=0:C=D

4108 Z=FHA(B)

428 IF F=0 THEHM 4€@

430 IF Z=2ZL THEM 4%0

440 POKE ZL,IL:ZL=2Z'IL=PEEK(ZL)
458 POKE Z+3a728.0

4€3 POKE 2+29728,0

47¢ GET R¥:'IF Ag="" THEM 470

428 POKE Z+2072a,1

498 REM

500 REM CURSOR COMTROL OPTIOHS
SRS REM

1@ IF AE="0" THEM 1500

T2@ IF Ag="R" AMD C=7 THEM C=0:00T0 419
38 IF AF="R" THEM C=C+1:0G0T0 418
542 IF R&="HEI" AMD C= THEM C=7:0G0T0 41@

108

556
bl %)
57
s8a
sl
el
€10
€25
7E9
vas
7ia
72e
73e
74@
750
760
770
783
800
80%
810
820
8zae
g4
993
1020
1085
ielio
1820
1630
1e4a
1652
1069
ia7e
1030
1850
1108
1110
1120
1136
1140
1153
1169
117e
1195
1200
1285
12109
1220
12268
1246

IF Ag="N"
IF A$="X"
IF Ag="y
IF Ag="7y"
IF Ag="
IF Rg="z"

IF F=1 THEM £@@

REM

THEN C=C~1:GOTN 410

AWD R=7 THEM R=@:G0TQ 410

THEN

AMD R=8 THEN R=7:00T0 41@

THEHM
THEHM

REM DEFIME NEW

REM
IF Ag="4"
IF Ag=t-n
IF Ag="=n
IF Ag=nmm
IF Ag="R"
IF Rg=pw
GOTO 410
REM

THEM
THEN
THEH
THEN
THEM
THEN

R=R+1:00T0 418

R=R~1:00TC 4108
408

CHRRARCTER COPTIOMS

POKE 2,31:G07T0 418
POKE 2.46:G0T0 41@
1€
37
1eao
2008

REM REVIEW CHARACTER SET OPTIONS

REM
CR=FNE{@)

IF R¥="N" THEM POKE 368€%.,240:060T0 2€Q

IF R$="E" THEN POKE 236869,248:F=0:G0T0 1882

GOTO 418
REM

REM DISPLAY CHARACTER SET OPTICOMS

REM

POKE 36369, 255:R=4:C=0
ZL=FHACRY ' IL=32

F=1 :PRINT"T";
PRINT" ¥2ABCDEFG"
PRINT"HIJKLMHO"
FRINT"PQRSTUWL"
PRINT"XYZLE£] te"

PRINT" |"CHRE(34)"#$087"
PRINT" OO, ~, /"

PRINT" Q1234567

s L=
PRINT"®"SPCC13)" @OPTIONSH"
PRINTSPCC18) " @ MEW CHARE!
PRINTSPCCI12Y"¥E ENIT CHARR"
FRINTSPCC10) "8 QUITE"

FRINT"89:

BC=PEEK {32400

GOTD 410
REM

REM EDIT OPTIONS

REM

PRIMT 32" SPC/ 132" BOPT I0MEE"

PRIMT

PRINTSPC(PY " s+® ADD DOT"
FRIMTSPCCP) " #-8 ERARSE"

109

1250 PRINTSPCCF" Z=2 UPDATE"
1268 PRIMWTSPC(P) " @B REVIEW"
1272 PRIMTSPCC(P>"@am QUIT"
1222 PRIMTSFCCP)"<B® ADD DATR"
1238 FRIMTSPLCC(P+1)"TISTRTEMENT"
1208 RETURM

1425 REM

1580 REM QUIT

1585 REM

1510 POKE 5€,FEEK(565+2

1528 POKE 36869,240

15328 POKE 36875,27

1540 FRINT"IXS BYE!"

1550 END

1585 REM

1660 REM UPDRTE

1€a5 REM

1610 PRINT"&";

1620 X=CS+8#CR

1630 FOR R=B TD 7:SM=0

1646 FOR C=@ TO 7:D=7-C

1658 SM=SM-21TD#(PEEK(FNR(B)>=81>
1660 NEXT C

1672 POKE X+R,€M

1682 PRINTSPC(8),;SM

1699 NEXT R:'R=0:C=p

i7e0 GOTO 410

1795 REM

1822 REM EDIT CHAR

1865 REM

1818 PRINT"I"

1828 ¥=CS+8%CR

1830 FOR R=8 TOQ 7:Y=PEEK(X+R)
1848 FOR C=B TO 7:Z=FNR(@>
1858 N=46:Y="r¥2

12€60@ IF Y5295 THEN Q=81:Y=Y-25€
1676 POKE 2,0

1838 MEXT C,R

1898 R=0:C=B

1S62 GOSUB 1280

1910 GOTO 419

19385 REM

2606 REM ADD DATR STATEMENTS
2005 REM

2010 ¥=CE+2%CR

2620 PRIMT " IIelslalesg"

20323 PRINTLH; "DRTA"

2040 PRIHTRICHT$(STRE(KD . LEMCSTREKI D12
2e5m FOR I=¥ TO X+7

2858 FRIHMT",";

2078 PRIMTRICHT4(STRE(PEEK(]I), LENCSTR$(PEEK (I 5~17

110

2028 HNEXT 1

2839 PRINT:PRINT"RUN X"

2180 POKE 9088,PEEK(58@)+1

211@ POKE 198,9

2128 FOR 1=6 TO 8

2132 POKE I+46€31.12

2148 NEXT 1

2156 POKE 56.PEEK(I6Y+2

21€0 EMND

3008 DATAR7472.48,72,72.48,74,€8.58,0

RERDY.

BIG CHARACTER
DESCRIPTION

The program Big Character displays the use of the POINT
command. This enables us to plot points to the full resolution of
the VIC, thatis 160 pixels by 160 pixels. The routine shown here,
in lines 220 to 270, could be used in any program where we
require a character that has previously been defined with the use
of data statements, to be displayed on the screen at a specified
central X,Y coordinate.

RUNNING THE PROGRAM

The data for our large character is stored in the data statements in
fines 1100 to 1180. The first two numbers define the size of the
character array which we will use to store the data; note that this
is dynamically dimensionted on reading that data. Here we are
storing the information in binary form: that is, using the digits O
and 1 to define whether a particular pixel is to be ‘lit’ or ‘unlit’. If
you hold the book far enough away from you, you can probably
see the character actually drawn out by those data statements.
Having stored all the information in the array C(X,Y), we input the
variables XC and YC to define the central coordinate for displaying
the character, and finally the routine in lines 220 to 270 plots out
the character on the screen. Line 300 then sends us back to plot
out another one, and so on.

PROGRAM STRUCTURE

60-70 set colours

30 draw border round screen using subroutine at
500

120-180 set up character array from data statements

210-219 input character centre coordinates

220-270 plot character on screen

300 back again for another go

500-560 border drawing subroutine

1000-1060 input routine
1100-1180 data statements for character

1R
2R
3R
18

20

30

4@

0

€0

70

75

£0

85

sa

93

ieo
11e
120
130
140
158
1€0
178
180
is0
200
285
210
211
212
213
214
215
218
217
218
219
220
2ze
240
241
242
243
25a
260
27e
zee
300
350
360
zra

EM BIG CHRRACTER

EM wsdackgipk bk diokikidob

EM

REM THIS PROGRAM GEMERATES LARGE CHARACTERS LISTHNI
REM THE POINT COMMRMD. MWITH CHRRACTER DATA

REM STORED IN AM ARRAY
REM
REM SET COLOURS
GRAFHIC 2
COLOR 3.3.0.10
REM
REM DRAW BORDER
REM
GOSUB Tea
REM
REM SET UP CHARARCTER ARRAY FROM DATA STATEMENTS

REM

RERD X.%¥

DI CCX, Yo

FOR I=1 TO ¥

FOR J=1 TO X

RERD CJ.,15

MEXT J

MEXT I

REM

REM INPUT CHRRACTER COORDINATEE AND DRAW
REM CHARACTER

REM INPUT CHRRACTER CEMTRE COORDIMARTES
Zs’ " J=5

CHAR 19,2,"?"

GOsSUE 1@20

XC=A:Zg=""

CHAR 19,J,",":J=J+1

GOsSUB 1028

YC=RA:FOR I=1 TO 500:NEXT 1
IF ¥C<@ OR ¥YC<@ THEN 350
CHRR 12.,2," "
FOR I=1 TO ¥

FOR J=1 TO ¥

IF C{J.1>=0 THEM 260

IF XC+EHCI-X/2:<@ THEM 260
IF WC+6#%(I-Y/254B THEMN 2¢O
IF YC+e#(I-Y/25>358 THEM 2€@
POINT 3, XC+E#{T~'P /20, YCHEHRCI~K/2)
HEXT J

NEXT I

RESTORE

GOTO 269

REM EHND

COLOR 1.2,6.0

GRAFPHIC B

114

i
-

455
508

505

510

520

530

548

550

560

995

1000
1605
1610
1820
1830
1040
1650
1660
1095
1100
1102
1105
1107
1108
1118
1120
1130
1148
1158
11£0
1178
1180

RERD

EMD

REM

REM DRAW BORDER RROUMD SCREEN
REM

FOINT 3.0.0

DRAW 3 TO 1923.0

DRAK 3 TO 1023,9%0

IRAW 3 TO 8,950

IRAW 3 TO 9.0

RETURN

REM

REM ROUTINE TO INPUT DATA
REM

CET R$:IF A$="" THEN 1010

IF (RSCCA%><48 DR ASC(A%$>>57) AND AECO"-" THEN 1@83@

CHAR 13.,J,R%:J=J+1
Ze=Z$+R%¥:6G0TO 10610
A=YAL(Z%>

RETIURM

REM

DATA
DATA
DATA
DRTA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

L
-

ORI~

~ .

~
- 0~
~
~
~

~
~-

-
~

~
LW
~ v W o

-

~
R " u

L S N S

L N ST N R
-~

L N
~

-

-
R S A N S

DAV

- v 0~

L W S

~
[N

HFARNE~ OO0 K r

~ v v o~

DO e R OO+
QO RIIREIO~OON
OO~

R T N

PR AORONMN @+

L N e

QOB
-~

HG?“OQOQQQQ»
QAR ORROQ -
QO DOND =D
DO, RAO®

Y.

115

-

L
.

SCALE 1
DESCRIPTION

The ability to scale a shape is one of the most useful in the
computer’s repertoire, and finds a home in many a program. For
instance, computer aided design would not be where it is today
without this function. Unfortunately, the VIC does not have a
scaling command, and hence this routine. In its most simple form
as we present it here, scaling just involves taking an object (here
we have a rather simplistic view of a tree!), increasing the size of
each line that makes up the object, and plotting out our new
drawing. What this particular program suffers from is movement
of the object as new ones are plotted: in other words, our original
design does not get surrounded by larger ones, or itself surrounds
smaller ones, but just becomes part of a grand row of small,
medium and large trees.

RUNNING THE PROGRAM

In line 110 we dimension our shape data arrays to contain 20
variables each. The data comes from the statements in lines 210
to 250, and as you can see the first number read is the number of
sets of data statements to come: in our case 4. Dimensioning to
20 is just a precaution! In order, the data statements present the
coordinates X, Y of the start of one of the lines that make up the
tree, and the coordinates of the end of that line. Hence, four
statements for our four line drawing. The scaling factor S is then
input in line 280: when S % 1 we have the original size, a number
less than 1 is smaller, and a number greater than 1 gives us a
larger image. Scaling factors are then calculated in lines 310 to
360, and our new image plotted out in lines 410 to 530, by
drawing out each line in turn. Our usual variable DS is used for dot
spacing, and you can specify this to be whatever you like. As
pointed our earlier, this program suffers from not having a
constant central coordinate.

PROGRAM STRUCTURE

60-70 set colours
10) draw border using subroutine at 800

110-120 set up shape and scaled shape data arrays
140-170 read data for shape
210-250 data for shape

118

280-285
310-360
410-530
600

800-860
900-930

input scaling factor

calculate scaling

plot each line in turn to specified size

go back for another go with a new scaling factor
border drawing subroutine

end

1000-1110 input routine

119

1 REM ECALE 1

2 REM ¥¥s#kkddksohFpsoipyiohpions

3 REM

10 REM ROUTIME TO CHAMGE THE SCALE OF A SHRPE IH
22 REM THE SHRPE DATA TARBLE

30 REM

42 REM

52 REM SET COLOURE

€@ GRAPHIC 2

78 COLOR 3.3.0,10

7?5 REM

88 REM DRAW BORDER ARCUND SCREEN
85 REM

S0 GOSUB 8ae@

95 REM

160 REM SET UP AMD IMPUT DATA FOR SCALING
165 REM

126 REM SHAPE DATA RRRAYS

167 REM

110 DIM X(222,Y(2085,U¢28),V(20)
115 REM

116 REM SCALED SHAPE DATA ARRAY
117 REM

120 DIM R(205,B(20),C(20),D(28>
125 REM

1230 REM SET UP SHAPE DARTA ARRAY
135 REM

146 READ HWL:REM NUMBER OF LIMES IN SHAPE
156 FOR I=1 TO HL

168 RERD K(IJ,¥YC(I>,UCIY, V(IO

178 NEXT 1

200 REM SHRPE DATA

205 REM

210 DATR 4

220 DATAR 100,90,100,130

230 DATH 199, 150,9@, 130

240 DATA 9@,130.11@,130

258 DATA 110,136,100, 1%0

260 REM
288 REM INPUT SCALING FACTOR
281 Zg="":iT=5

282 CHAR 13.2."7 "
283 GOSUB 1008

284 S=Z

285 IF =8 THEM 508

250 REM

3668 REM DO SCALIMG

385 REM

216 FOR I=1 TO HL

320 ACIO=XCII#E

338 BCIO="Y(I)#S

120

348 CCId=UICTI%S
35O DCIY=VCId%S
360 HEXT 1
295 REM

400 REM DRAW SHAPE

405 REM

418 FOR J=1 TO NL

420 DI=1

420 P=C(Jy-ALI>

440 R=DLIY-B(IY

450 R=SOR(P¥P+R¥M)

4€0 LX=P/R

470 LY=0/R

480 FOR I=2 TO R STEP DS

450 K=EHCACTY+THLY)

500 Y=OSE-CH(RCID+IHLY)

502 IF <@ OR Y4 THEMN S22

504 IF ¥>1023 OR ¥>252 THEN 520
510 FOINT 2.%,Y¥

528 NEXT I

538 MEXT J

£00 GOTO 28@:REM DO AGRIN

7595 REM

£02 REM DRAWM EORDER RROUMD SCREEN
e85 REM

812 FOINT 3.0.@

820 DRAWN 3 TO 1923,0

€30 DRAK 3 TO 1p23.950

842 DRAW 3 TO @, 95@

£58 DRAW 3 TO 2,0

260 RETURM

S0 REM EMD PROGRAM

919 COLOR 1,3,6.0

220 GRAPHIC @

930 EMD

855 REM

10600 FEM IMPUT DATA

1005 REM

1018 GET A%:IF Af="" THEM 1@1Q
1820 IF CASCCALYC4R OR ASCCASIDETY AMI AL . THEM 1100
1030 Z4=7%+A%

1035 CHAR 12, T,Rs

1848 T=T+1

1658 GOTO 1R1@

1199 Z=YAL(Z%)

1119 RETURH

RERDY.

121

SCALE 2
DESCRIPTION

Again here we are taking a shape, and scaling it in both X and Y
directions, but with the major fault of the previous program
rectified. This time we have a routine to correct the movement of
the object as it is scaled, and plot everything out from a common,
constant X,Y coordinate. Thus we have the same shape,
expanded in both X and Y, or indeed contracted in X and Y, all
centred on the same coordinates. This new routine is quite a
straightforward 7 line one (lines 310 to 350). One other
difference is that our object is rather more exotic this time, being
made up of six lines rather than just 4. You can of course
experiment with objects that are far more complicated than this:
just be careful about the data statements in lines 210 to 255, and
make sure you have all the X,Y coordinates right, and more
importantly in the right order.

RUNNING THE PROGRAM

As with Scale 1, we dimension our shape and scaled shape data

arrays (lines 110 to 120), read in the shape data (lines 140 to

170), and give the data statements (lines 210 to 255). The

scaling factor S is input in line 280: as before a number greater

than 1 means a larger shape, and less than 1 means a smaller

one. The illustration shown ranges fromS = 1.5downto S =
0.1. The same routines as previously used are here to perform
the scaling and draw the shape. The only new one is contained in
lines 310 to 350, which calculates the central coordinates for our
larger {or smaller) object: these are the variables CX and CY.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using subroutine at 800
110-120 set up shape and scaled shape data arrays
140-170 read data for shape

210-255 data for shape

280-285 input scaling factor

310-350 calculate new central coordinates
410-460 calculate scaling

510-630 plot each line in turn to specified size

700 go back for another go with a new scaling factor
800-860 border drawing subroutine

122

900-930 end
1000-1110 input routine

1 REM SCRLE 2

2 REM $#F4kh kb bbb b ok b

3 REM

18 REM ROUTIME TO CHAMGE THE SCALE OF R SHRFE IM
2@ REM THE SHAFE DATA TABLE

3@ REM USING THE SHRPES CEMTRE

48 REM

5@ REM SET COLOURS

€& GRAFHIC 2

78 COLOR 2.3.@.16

123

75 REM

€68 REM DRRW BORDER AROUHD SCREEH
&5 REM

%@ GOsUB s8a

S5 REM

1886 REM €ET UP AMD IMPUT DATR FOR SCALIMG
185 REM

105 REM SHAPE DRTA RRRAYS

1e7 REM

118 DIM X(205,¥Y(28)>.,1U¢20>,V(20)
115 REM

116 REM SCALED SHRPE DATA RRRAY
117 REM

120 DIM RC205,B(20),C¢28>,D(20)
125 REM

132 REM SET UP SHRPE DATA ARRAY
135 REM

148 READ ML‘REM NUMBER OF LINES IN SHRPE
158 FOR I=1 TO ML

168 READ X{IJ,YCIN,ULIY. VLI
178 NEXT I

20@ REM SHAPE DRTA

203 REM

218 DATR €

220 DATA 188,11@8,149,119

230 DATA 146.116.170,%50

235 DATA 178.,5@,148, 78

248 DATA 146.,79.100,70

250 DRTH 188,70.70.%0

25% DATR 70.59,108,114d

260 REM

280 REM INPUT SCALING FRCTOR
281 Z$="":T=5

282 CHAR 19,2,"? "
283 B05UB 1940

284 g=2

285 IF S=B THEN 00

298 REM

368 FEM FIHMD CEWTRE

205 REM

318 CH=B:CY=Q8

328 FOR J=1 TO HL

33Q CH=CK+XCTY+ULT)

S35 CY=CY+Y(Id+v(T>

340 HEXT J

345 "CH=CX/(2HHLD

35@ CYW=CY/C2%HL)

293 REM

466 REM DO SCALING

485 REM

41@ FOR J=1 TO HL

124

420 ACTI=CH+HOH~4C T 2%S
430 BCI)=0W4+(CY~YCT) %S
440 COII=CH+OCH-LICT) %S
450 DCTY=CH+COY~Y (T I%E
463 HEXT J

495 REM

500 REM DRAK SHAFE

505 REM

518 FOR J=1 TO ML

528 DE=1

520 P=CLII-ACTD

540 G=T(J)=BCT)

S50 R=C0R(PHP+RKGD

SE0 L¥=F/R

579 Lv=0/R

58@ FOR I=@ TO R STEP IS
E98 K=EHCACTI+I¥LK-48)

£PQ W=SER-ERCECTY+IHLY)
£02 IF %40 DR Y40 THEN €29
€04 IF X¥31922 OR Y3958 THEN €20
£10 POINT 2.%.Y%

£28 MEXT 1

€30 HEXT J

7600 GOTO 288:REM DO AGAIM
755 REM

209 REM DRAL BORDER RROUND SCREEM
205 REM

€10 FOINT 2,9.0

820 DRAM 2 TO 18232.0

872 DRAM 2 TN 1@23,950

049 DRAM 3 TO @,950

€50 DRAK 2 TO 2.0

eEA RETLRM

0@ REM EMD PROGRAM

91@ COLOR 1,3.6.0

520 GRAFHIC 8

O RARA RS]

220 EHWI

o35 REM

igeg REM IMPUT DATA

1285 REM

1212 GET A% IF Af="" THEW 1019]

1020 IF (ASCC(REIC48 DR RZCCAZIDSTY AMD ALLO," THEM 1190
12230 ZE=2F+RAF

1227 *CHAR 12, T, Af

1040 T=T+1
1052 GOTO 101G
1106 Z=YAL(Z%)
1110 RETURH

FERDY.

125

STRETCH 1
DESCRIPTION

Stretching, although on the surface the same thing as scaling, is
in fact a very different animal. Scaling merely produces a larger or
smaller image of our original object, based either around the same
or a different central coordinate. Stretching, on the other hand,
does not necessarily change every line of our object to the same
extent, but ideally we do want to stick to the same central
coordinates. You can see in the illustrations here that we have a
normal image, one stretched in the X axis, and one stretched in
the Y axis. With the program being written the way that it has,
you can combine stretching in both X and Y axes, without having
to use the same stretching factor for each one.

RUNNING THE PROGRAM

Until we reach line 280 the program follows the same lines as our
earlier Scale 2 program. That is, we set up our shape and scaled
shape data arrays (lines 110 to 120), and read in the data in lines
210 to 255 by the routine in lines 140 and 170. You will note
that we are using the same object as last time, that is, a six sided
figure. Lines 280-288 let us input the scaling factors SX and SY
inthe X and Y axes, and these are later used in lines 410 and 460
to calculate the scaling and stretching figures. Before and after
that we find the central coordinates of our object (lines 310 to
350), and actually plot the figure out (lines 510 to 630) one line
at a time.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using subroutine at 800
110-120 set up shape and scaled shape data arrays
140-170 read data for shape

210-255 data for shape

280-288 input scaling factors

310-350 calculate new central coordinates
410-460 calculate scaling

510-630 plot each line in turn to specified size

700 go back for another go with a new scaling factor
800-860 border drawing subroutine

900-930 end

1000-1110 input routine

126

1 REM STRETCH 1

2 REM ¥FHFFFARRRFALNARHEEREHR

& REM

i@ RENRGUTINETUSTRETCHORCHHHGETHESCHLEDFF?SHHPE
23 REM IM THE SHRPE DATA TABLE. IT USES THE SHRPES
3@ REM CENTRE AWD DIFFERENTIAL %,¥,SCALING FACTORS.
4@ REM

=6 REM SET COLOURS

60 GRAFHIC 2

70 COLOR 3.3.0.10

75 REM

&0 REM DRAW BORDER AROUND SCREEM

&85 REM

2@ GOSUR 80@

95 REM

188 REM SET UP AND INPUT DATA FOR SCALING

185 REM

106 REM SHAFPE DATA ARRAYS

187 REM

110 DIM ¥(28>,¥(28>,UC287,V(28)

115 REM

116 REM SCRLED SHAPE DATRA ARRAY

117 REM

120 DIM A{2@>,E(20>,C(20),D2a)

125 REM

130 REM SET P SHAPE DATR ARRAY

135 REM

140 RERD NL:REM WUMBER OF LINES IM SHAPE

158 FOR I=1 TO HNL

160 READ KCID,YCIN,UCID,WCID

178 NEXT 1
260 REM SHAPE DARTA
205 REM

21@ DATA 6

z20 DATA 10@,110,140,110

239 DATA 14©,118,170,50

235 DATA 170,90,140,7@

240 DATA 14@,702.109,70

25@ DATA 18G,748.76,5@

255 DATA 79.98,100.118

268 REM

230 REM INPUT SCALING FACTORS IM X AMD ¥ RRIG
281 Zg="":T=3

282 CHAR 13.2,"7 "
283 GOSUER 1068

284 SK=Z

285 CHAR 19.T,", " T=T+1

288 Z¢="":1Z=0:GOSUE loe@

287 SW=Z

223 IF Sw=@ OR SY=0 THEH 528

298 REM

128

360
205
310
220
230
235
240
245
350
395
400
405
410
420
40
440
450
469
495
500
505
510
520
530
540
550
560
=70
520
590
600
£02
€04
610
€20
£30
7on
795
eon
ans
810
ez0
£30
240
£53
een
)
210
8z

a%e

Pl it

S95

FEM FIND CENTRE
REM

Cr=a:CY¥=0

FOR J=1 TO HL
CH=CHUCTIHUCT)
CY=CY4+Y (I +V ()

MEXKT J

CH=CAA/(2%HL)
CY=CY/(2%HLD

REM

REM DO SCALIMA AND STRETCHIMG
REM

FOR J=1 TO HL
RCII=CR+(OH~KHET I IRSH
BCID=CY+(CY-Y (T2 d%BY
CLI)=CH+(OX~-UCT I I%SK
DI =CY+(CY-Y (T I%sY
NEXT J

REM

REM DRRM SHAFE

FEM

FOR J=1 TO ML

De=1

P=CLJI>-RCI>
R=N{J>~B(J>
R=SRR(P*P+H¥R >

L¥=P/F.

Ly=0Q/R

FOF. I=8 TO R STEP DS
X=CHCR(II+THLN-48)
Y=OTR-EKCRCII+IHLY)
IF ¥<@ OrR ¥{@ THEM €209
IF ¥>1@23 OR Y2952 THEM €20
FOINT 3,¥,%

MEXT I

MEXT J

GATO 28R'REM DO RGRIM
REM

REM DRAL BORDER ARDUND SCREEN
REM

FOINT 3,02.8

DRAM 2 TO 1223.9

IRAM 3 TO 12273, 358
IRAL 3 TO 9,552

IRAK 2 TO 9.0

RETURM

REM END PROGRAM

COLOR 1.3.6.0

CGRAFHIC B

END

FEM

129

1622 REM IMNPUT DATA

1825 REM

1212 GET A%£:IF AF="" THEN 1210 ,
1020 1IF (ASCLA$ICAR OR ASCLAEISET)Y AND RO, " THEM 1128
10268 Z¢=2%5+A%

192% CHAR 19.7.R%

1840 T=T+1

ie5@ GOTO 1210

1182 Z=VALIZ%>

1112 RETURM

RERDY.

130

STRETCH 2

DESCRIPTION

The Stretch 1 program as described is an extremely useful one,
but alas it is not without its limitations. Although we can stretch
images in both X and Y directions, one thing which we do not
have control over is the angle of stretching. At present,
everything is going at ninety degree angles. What if, as is very
common in computer aided design, and indeed other fields, we
want to stretch something at, say, 37 degrees to the X axis? The
routine in lines 410 to 650 in this program performs just that
function. | will not go into the mathematical detail here, many
excellent books have been written on the subject, but will simply
say that it works!

RUNNING THE PROGRAM

As in previous programs, we first of all set up the shape and
scaled shape data arrays before reading in the actual data itself
from lines 210 to 240. This time we revert to a much simpler
shape, that of a rectangle. In line 280 we again input the scaling
factors in the X and Y axes, and in line 290 we input AS, the
angle of stretching. This is the angle by which we will evaluate
our shape above the X axis. In other words, if AS is equal to 45
degrees, as it is in the illustration, the line joining the two corners
of the rectangle will be at 45 degrees to the X axis. After
calculating the centre of the newly formed shape, the scaling,
stretching and rotating routine in lines 410 to 650 comes into
effect. As you can see this is quite complicated, and | do not
intend to go into any detail. This book is designed to help you
with graphics on the VIC, not give you a thesis on mathematical
theory! The program needs a 16K expansion RAM.

PROGRAM STRUCTURE

60-70 set colours

8o draw border using routine at 1000

110-120 dimension shape and scaled shape data arrays
140-170 read shape data

210-240 shape data statements

280-288 input scaling factors in X and Y axis

289-293 input angle of rotation;

convert degrees to radians
131

310-350
410-650

710-830
840
1000-1060
1100-1160

calculate centre coordinates

perform scaling, stretching and rotation
calculations

draw new shape line by line

go back for another go

border drawing subroutine

input routine

132

iR
2R
3R
i@

20

3a

48

45

4€

50

&0

79

75

ea

85

1%

95

180
185
106
io7
110
115
116
117
120
125
13@
135
1409
150
160
170
200
205
210
220
230
233
240
269
28
281
282
283
284
283
285
287
288
28

EM STRETCH 2

EM ol dohdp b pko g Aok ion

EM

REM ROUTINE TO STRETCH OR CHANBE THE SCALE OF A. SHAFE
REM IN THE SHAPE DATA TRELE. IT USES THE SHAPES
REM CEMTRE AND DIFFEREMTIAL X,Y.,SCRALING FACTORS.
REM PLUS AM ANGLE OF ROTATIOM RALONG WHICH STRETCHIMG
REM TRKES PLRCE.

REM

REM SET COLOURS

GRAPHIC 2

COLOR 3.3,8.10

REM

REM DRAW BORDER ARDUND SCREEN

REM

GOSUB 1100

REM

REM SET UP RND INPUT DATA FOR SCALIMNG

REM

REM SHAPE DATA RRRAYS

g?g X(20),Y(20>,Uc20>,V 20>

SEQ SCALED SHAPE DATR ARRAY

g?ﬂ RC20),B(2@),C(20>,D(28)

ggg SET UP SHRPE DATA ARRAY

EEQD NL:REM NUMBER OF LINES IN SHAPE

FOR I=1 TO NL

READ XCIJ,YCIN,UCIY, V(DD

MEXT 1

REM SHAPE DRTA

REM

DATAR 4

DATA 100,120,150, 120

DRTA 156, 120,158,990

DRTA 1%6,%9,1@0,50

DATR 180,%98,100,120

REM

REM IHPUT SCRLIMG FACTORS IM X AMD ¥ AXIS
Zg="01T=5

CHAR 19.,2,"? "
GOSUB 1209

SK=Z

CHAR 18,T,",":T=T+1
Z&="":2=0:G0ZUR 19@Q

Sv=z

IF S¥=B DR SY=0 THEN S22

REM THPUT AMGLE OF STRETHCIMG

133

298
291
292
223
2395
z00
385
319
3z0
338
335
340
345
350
395
400
483
410
420
430
440
459
4€0
4790
480
450
See
1.
520
530
540
559
560
570
€5
700
705
71a@
720
730
740
758
7€0
770
730
790
785
gao
892
ea4
805

134

Zg="" T=T+E
CHAR 19, T3, 7"
GOSUB 1008
AS=Z#1/180

REM

REM FIND CENTRE
REM

CK=0:CY=0

FOR J=1 TO NL
CR=CR+RCII+UCT
CY=CY+Y (I +VCT)
NEXT J

CX=CH/ C2HNL)
CY=CY,/ C(2#HL)

REM

REH PO SCALING AND STRETCHING
RE

FOR I=1 TO HL

X1=x(1>-CX

Yi=Y(I5-CY
F=(X1¥COSCASI+7YI#SINCAS) IHSY
G=(~X1¥SIMC(AS)I+Y 1KCOSCAS) IHEX
X2=F¥COS(AS)~CHSINCRS)
ACI>=X2+CH
Y2=F¥SINCRS>+GHCOS(RS?
B(I)=Y2+CY

H1=UCIH-Cx

Yi=v(I>-CvY
F={X1%COSCASI+Y1¥SINCAS) DHSY
G=(~X1¥SINCAS) +Y 1¥COS(AS) IHSX
X2=F#COS(RS>~-G#SINCAS)
CCIy=K2+CX

y2=F¥SINCAS) +G#COSC(RED
DLIY=Y2+CY

MEXT 1

REM DRAW SHAPE

REM

FOR.J=1 TO HNL

D=1

P=C(J>-ACID

O=NC(J5~-BCID

R=SQR{PH¥P+Q¥C

LKX=P/R

LY=C/R

FOR I=0 TO R STEP IS
K=CH{RLT) +1#LK-48)

REM

Y=950~-5#(BCI>+ 1%L

IF X<8 OR ¥<8 THEM 820

IF ¥>1823 OR ¥>950 THEN 820
REM

810 POINT 3.%,Y

820 HEXT I

830 NEXT J

848 GOTO 280:REM DQ AGARIM

508 REM EMD PROGRAM

912 COLOR 1,3.€.@

928 GRAPHIC @

9308 END

993 REM

1080 REM IMPUT DRTR

1085 REM .

101@ GET A$:'IF Ag="" THEN 1010
1828 IF (ASC(A£)><48 OR ASCCASIDS?) AND RECO ", " THEN 1060
1830 Z#=2%¢+A¢

1835 CHAR 19.T.A¢

1048 T=T+1

1850 GOTO 1018

1068 Z=VAL(Z$>

10872 RETURH

1823 REM

1168 REM DRRW BORDER RROUMD SCREEM
11835 REM

1110 POINT 3.8.9

1126 DRAN 3 TO 1023.0

1132 DRAW 3 TO 1823,9%0

1140 DRAWN 3 TO 8,950

1150 DRAWN 3 TO 0.0

116@ RETURN

READY.

135

ROTATE
DESCRIPTION

In this section we introduce the concept of a transformation
matrix. A transformation matrix is essentially a set of equations
which are applied to a coordinate point in order to move it to the
required position. | shall not endeavour to derive these equations
(there are many excellent text books on the subject) simply show
how they can be used to produce the required effects. The
rotational transformation matrix consists of four equations and
these are calculated in lines 250 to 280. Lines 290-300 use the
values from this matrix to calculate the new coordinates of the
point.

Rotation requires the movement of a point in a circle around a
fixed axis on the screen. By making the point the end coordinate
of a line, a line or a shape can be rotated around this axis. The
axis of rotation can lie anywhere on the screen, it may even lie on
the same coordinates as the point to be rotated. In this program
you will notice that the small cross is being rotated in a clockwise
direction around an axis thereby describing a circle, note that the
point erase — lines 310 to 340 — was removed to produce the
diagram. Counterclockwise rotation can be produced by using a
negative angle of rotation.

RUNNING THE PROGRAM

The program requires the input of five parameters. These five are
the X and Y coordinates of the centre of rotation, the X and Y
coordinates of the point to be rotated and the angle of rotation.
The angle of rotation is in degrees and is the angle between two
lines drawn from the centre of rotation to the O degree or three
o’clock position and from the centre to the new point position. It
should be noted that the FOR NEXT loop in lines 235 and 410 is
inserted to generate a sequence of 360 rotational plot points;
these should be removed to plot a single rotation.

PROGRAM STRUCTURE

35

60-70 set colours

90 draw border around screen using subroutine at 500
110-119 input coordinates for centre of rotation

120-129 input coordinates for point to be plotted
130-136 input angle of rotation

138

210
215-220
225
230
235
240
250-280
290-300
310-340
350-380
410
500-560
600-660

convert rotation angle from degrees to radians
initialise variables

plot point at centre of rotation

set start angle at O

loop to plot 20 consecutive rotations
add angle of rotation to start angle
calculate rotational transform matrix
calculate new coordinate point position
erase previous rotated point position

plot new rotated point

loop to rotate again by the rotation angle
border drawing subroutine

input routine

+++++ +
<+ +

+ +,
+ +
+
+
+
+
+-o-

+, +

139

1 REM ROTATE

2 REM HH#fbmihhab s oo

3 REM

1@ REM THIS PROGRAM ROTRTES A FOINT RROUND
2@ REM A CENTRAL POINT ON THE SCREEN
20 REM

35 DIM M(2,2)

4@ REM

£ REM SET COLOURS

55 REM

€0 GRAPHIC 2

76 COLOR 3,3,8.3

75 REM

§0 REM DRAW BORDER

§5 REM

56 GOSUB 500

95 REM

166 REM INPUT PARAMETERS

105 REM

116 REM COORDINATES OF CENTRE OF ROTATION
111 Zg="":T=5

112 CHRR 19,2,"?"

113 GOSUE €00

114 XC=Z:Z$=""

115 CHAR 19,T,".":T=T+1

11€ GOSUB €06

117 YC=Z:FOR I=1 TO 500:MEXT I
118 IF XC=0 OR YC=@ THEN 450

119 CHAR 19,2," "
128 REM COORDINATES OF POINT TO BE ROTATED
121 Z$="":T=5

122 CHAR 19,2,"?"

123 GOSUB €08

124 WP=Z:2%=""

125 CHAR 19,T,".":T=T+1

126 GOSUB 600

127 YP=2Z ,

128 FOR I=1 TO 5@@:NEXT I

129 CHAR 15,2," "
136 REM RHGLE OF ROTATION

131 Zg="":T=5

132 CHAR 19,2,"?"

133 GOSUB €00

134 AR=Z

135 FOR I=1 TO S@@:MEXT I

136 CHAR 19,2, " "
195 REM

260 REM ROTATE FOINT

205 REM

216 AR=AR%m/180

215 KR=KF:YR=YP

140

217
220
225
230
2335
248
250
250
270
280
290
30
310
3ze
338
340
350
368
370
386
390
400
41@
420
450
4€0
470
495
560
sas
510
520
530
S4a
556
550

593

60
£03
€10
€20
£3e
640
650
(%)

RO=KR : YO="R
WP=~(HC~KP) { WP=—(YC—YP
POINT 3,XC.YC

R=0

FOR Q=1 TO 20

R=R+AR

MC1, 1>=COSCRD

MC1, 29=SINCRY

M(2, 1>=~SINCRD
M(2,2)=COSCRY

R=KCHD . PACRPEMC L, 1D +7PHM(2, 10
Y=WCHCKPRMC L, 29 +7YPHMC2, 2))
POINT 4,X0-12,Y0

DRAW 4 TO XO+12,¥0

FOINT 4,%0,Y0-12

DRAW 4 TO X0.Y¥0+12

POINT 3,XR-12,%R

DRAKM 3 TO XR+12,%R

FOINT 3,XR,YR-12

DRAW 3 TO X¥R,YR+12
XO=XR : YO="YR

¥R=K ' YR='Y

NEXT Q

GOTO 100

COLOR 1,3,6.0

GRAPHIC @

END

REM

REM DRAK BORDER

REM

POINT 3,8,0

DRAW 3 TO 8,950

DRAW 3 TD 1823,990

DRAW 3 TO 1023,0

IRAK 3 TO 8.0

RETURH

REM

REM INPUT DATA

REM

GET A%:IF A%="" THEH 616
IF (ASCC(A$3<42 OR ASCCA%IDST) AND ASCO"." THEW 650
CHAR 1%, T,A$: T=T+1
Z$=2%+A% :GOTO 610
Z=YRL(Z$)

RETURM

RERDY.

141

ROTATE 2
DESCRIPTION

In the same way that the program ROTATE rotated a point
around a fixed axis on the screen we can also rotate a line about a
fixed axis. This is not difficult since one is simply rotating two
points — the two end coordinates of the line. It should be noted
that in this program the line start and end coordinates are both
input as relative coordinates. A relative coordinate means that
the coordinate is not the normal screen coordinate but a value
which is relative to the coordinate of the axis point. If the axis is
set at the absolute screen coordinatesof X = 100 and Y = 80
then to have the start of the line at the absolute screen
coordinates of X = 150 and Y = 100 gives us a relative
coordinate value of X = 50 and Y = 20. From this we can see
that the relative coordinates are obtained by this calculation:

coordinate of point — axis coordinate

RUNNING THE PROGRAM

The program requires the input of seven parameters, starting
with the X and Y coordinates of the central axis around which the
line is rotated. This is followed by the X and Y coordinates of the
start of the line and then the X and Y coordinates of the end of
the line, all four values being relative coordinates with respect to
the centre of rotation. The last parameter value is the angle of
rotation, this is in degrees and is the angle between two lines
drawn from the centre of rotation to the original dot position and
from the centre to the new dot position. Note that the FOR NEXT
loop in lines 235 and 500 has been inserted to generate a
sequence of 20 rotations of the increment angle. These should be
removed to plot a single rotation.

PROGRAM STRUCTURE

40

60-70 set colours

90 draw border around screen using subroutine at 700
110-119 input coordinates for centre of rotation

120-129 input relative coordinates for start of line

130-139 input relative coordinates for end of line
140-146 input angle of rotation

210 convert angle to radians

215 initialise variables

142

225
230

240

250-280
290-340
360-500
510

700-760
800-860
900-930

plot point at centre of rotation
set start angle at zero

loop to plot 20 consecutive rotation increments
add angle of rotation to start angle

calculate rotational transform matrix

calculate new coordinate point positions

routine to draw line between the two end points
loop to next rotation increment

border drawing subroutine

input routine

end

143

i REM ROTRTE 2

2R
2R
1@

2@

ae

4@

4%

oa@

535

&

7a

75

&6

89

ca

95

iea
iie
111
112
113
114
115
116
117
118
118
1209
121
122
123
124
1285
126
127
128
129
120
131
132
132
134
138
137
138
139
140
141
142

EM $Ashb b A RAA AR AN K

EM
REM THIS PROGRAM ROTATES A LINE AROUND
REM A CEMTRAL FOINT OM THE SCREEM
REM
DIM MC2,2)
REM
REM SET COLOURS

REM

GRAPHIC 2

COLOR 3.3,8,10

REM

REM DRAM BORDER AROUND SCREEN

REM

GOSUB 70

REM

REM INPUT PRARAMETERS

REM COURDINATES OF CENTRE OF ROTATION
Zs=" L} :T=5

CHAR 19,2,"?"

GOSUB_800

KC=Z 1 zg=""

CHAR 19,T,",":T=T+1

GOSUE 508

YC=Z :FOR I=1 TO 5@@:HEXT I

IF XC=@ DR YC=@ THEN 500

CHAR 19,2," "
REM RELATIVE LINE STRRT COORDINATES
zsz nn :T=5

CHAR 13,2, "7?"

OOSUB_Soe

KP=Z 1 Zg=""

CHAR 19,T,",": T=T+1

GOSUD 868

wp=Z

FOR I=1 TO S@@:NEXT I

CHAR 13,2," "
REM RELATIVE LIME END COORDINATES
25: (L1} :T-_—_-S

CHAR 19,2,"?"

GOSUB_Gea

KQ=Z 1 Zg=""

CHAR 19, T, ", " i T=T+1

GOSUR 2u@

Q=2

FOR I=1 TO 580:HEXT I

CHAR 19.2," "
REM AMGLE OF ROTATIOH

Z$=ll " :T:s

CHAR 19.2,"7"

144

143 GOSUR 8@a

144 AR=Z

145 FOR I=1 TO S@@:NEKT I
146 CHRR 19.2.," "
195 REM

200 REM ROTATE LIME

285 REM

210 AR=AR¥r/180

215 KR=¥F:YR=YP

225 POINT 3,XC.¥C

220 r=0

239 FOR Z=1 TO 26

248 R=R+AR

250 M<1,1>=CO0SC(R>

2€0 M(1,2)=8SINCR)

276 MC2,12=-SINCRS

288 M(2,2)=COS<(R>

290 X=MC+XP#M{1.,15+YP#M(2, 1)
300 Y=YC+XPHMC(L, 25+YP#M(2,2)
318 XB=¥:YB=Y

3280 K=XC+XQ¥M{1,15+YQ0#MC(2, 1)
338 Y=YC+XR#MCL, 25+Y04M(2, 2D
348 XE=X:VYE=Y

345 REM

352 REM DRRAW LINE

355 REM

368 Ds=1g

378 P=XE-XE

380 Q=YE-YB

390 RL=SQR(P¥P+Q#0>

40@ LX=P/RL

410 LY=Q/RL

428 FOR I=@ TO RL STEP DS
430 X=KB+.7#CI¥LX)

440 Y=YB+I#L%Y

445 1IF X<@ OR ¥<@ OR Y>350 THEM 4£@
458 POINT 3.M, ¥

460 NEXT I

Te@ MEXT 2

516 GOTC 1e6@

£95 REM

7ég REM DRAMW BORDER
705 REM

7i@ POINT 3.8.@

720 DRAW & TO @.9%50
738 IRAM 3 TO 1823, 350
748 DRAW 3 TO 1022.@
750 DRAM 2 TO @.@

760 RETURH

795 REM

145

£@@ REM IMPUT DATA

£as REM

19 GET A$:IF A$="" THEN 318
€2 1F (RSCCR$EIC4S OR ASCCAEISE7Y AND AL, " THEN €50
£2@ CHAR 15.T,A%F:T=T+1

£4@ ZE=2$+A%GOTO 210

§58 Z=VAL(Z%$)

868 RETURN

S0 REM EMD PROGRAM

918 COLOR 1,3.6.0

928 GRAFPHIC ©

S38 END

READY.

146

ROTATE 3
DESCRIPTION

In the same way that the program ROTATE 2 rotated a line
around a fixed axis on the screen we can also rotate a shape
about a fixed axis. This is not difficult since one is simply rotating
a set of lines, each line being specified by the two end
coordinates of the line. The data for the shape is stored in a shape
table, this is stored in one of three arrays. The other two arrays
are used to store the data for the rotated shape and the previous
rotation — this is required by the routine which erases the
previous rotation. The data is stored as the beginning X and Y
coordinate of a line followed by the end X and Y coordinates of
the same line, these four values are then repeated for each line in
the shape. In this program the shape data is obtained from a set
of data statements — lines 710 to 740. The set of displays
which accompany this program show how by varying the centre
of rotation the shape is rotated in different ways, depending on
whether the rotational centre lies within the shape, directly on a
line of axis through the shape or to one side of the shape; also

shown is that the lines used to draw the shape can have a
variable dot spacing.

RUNNING THE PROGRAM

All the parameters required by the program are stored directly
within the program. The X and Y coordinates of the central axis
around which the shape is rotated are stored as the variables xc
and yc in line 250. The number of lines in the shape is stored as
variable ni in line 240. The X and Y coordinates of the start and
end of each line are stored as data statements in lines 710 to
740. The last parameter value is the angle of rotation, this is in
degrees and is stored as the variable ar in line 296.

Note: that the FOR NEXT loop in lines 300 and 620 has been
inserted to generate a sequence of fifty rotations of the
increment angle. These should be removed to plot a single
rotation. When plotting shapes with more than 20 lines then the
size of the shape data arrays should be increased accordingly.

PROGRAM STRUCTURE

60-70 set colours
90 draw border around screen using subroutine at 900

147

110
120-150
160-190
210-225
234-296
240

255
260-290
296

300

310
320-350
370-500
520

540
560-610
620
710-740
900-960
1000-1140
2000-2140

set up array for rotation matrix

matrix for original data shape

matrix for erased shape data

matrix for displayed shape data

initialise variables and constants

number of lines in shape

plot point at centre of rotation

load coordinate data into original shape matrix
set start angle to zero

loop to plot 50 consecutive rotation increments
add angle of rotation to start angle

calculate rotational transform matrix

calculate new coordinate point positions
jump routine to erase lines

jump to routine to draw lines

put displayed shape data into erased shape matrix
loop to next rotation increment

shape table data

border drawing subroutine

subroutine to draw shape

subroutine to erase shape

*,

L
;
sofsrsseres

.
»

SEXRITR I
o [
PRl dd
.

%

o’

.......

148

i REM ROTATE 3

2 REM $#basddspsrbhictasainey
3 REM

i@ REM PROGRAM TO ROTATE A 2D OBJECT AEOUT
26 REM A POINT ON THE SCREEM
3@ REM

46 REM

o REM SET COLOURS

55 REM

€8 GRAPHIC 2

7@ COLOR 3,3,9.3

75 REM

&0 REM DRAK BORDER

&5 REM

56 GOSUR 500

95 REM »
190 REM ARRAYS FOR DRTA TRANSFORMATION
185 REM

{@6 REM ROTRTION MATRIX

187 REM

118 DIM M(2.2)

115 REM

116 REM ORIGINAL SHRPE DATA
117 REM

126 DIM ¥(28)

136 DIM 7(20>

135 REM

140 DIM UC20

158 DIM v(20)

155 REM

156 REM ERRSED SHRPE DATA
157 REM

160 DIM W(20)

178 DIM Z<28>

175 REM

169 DIM S¢285

190 DIM T(2@)

200 REM

265 REM DISPLAYED SHAPE DRTA
206 REM

219 DIM 0C2@)

215 DIM P(28)

228 DM Q20D

225 DIM RC2@>

230 REM

524 REM SET P CONSTAMTS AND DATA FROM DATA TRELES
235 REM

246 HL=4

250 WC=4501YC=512

255 POINT 3,%C,YC

260 FOR M=1 TO ML

150

45a
450
470
488
4o
Soo
518
5za
&3a
546
550
568
S7a
580
590
600
€10
&ze
€30
540
656
£EB
6275

READ XAMY, YCND, UCND S YOND S SCND=UICHD TCHD =VEND

WONI =R CHY t 2N =P (D
NEXKT N

AR=45:R=0

REM

3 AR=AR#n/18@

REM

FOR R=1 TO 5@
REM

R=R+AR

REM

REM SET UP ROTATIOH MATRIX
REM

MC1, 15=COS(R>
MC1,20=SIHLRY
M(2,1)=-STNLR)Y
M(2,25=COS(R)
REM

.REM ROTRTE SHAPE RR DEGREES
M

RE

FOR N={ TO NL
P=~(XC-K(N>)
Q==(YC-YC(HY >

X=RKC+. 7HCPHEMCL, 1D+04MC2, 10D
Y=YC+P&M{1, 20 +Q#M(2, 25
D{NY=¥

PCNY =Y

P=~(XC-UCM>
R==(YC~V (N>)

X=XCH+. 7HCPEMOL, 10 +QHMC2, 10D
Y=YC+PEM(L, 25 +Q¥M(2, 27
QCHdY=X

RCHO =Y

HEXT N

RE™M

COSUER 2800

REM

GOZUE 1009

REM

FOR M=1 TO ML
W{N>=0(H>

ZCHY=PCHD

SCHI=RCND

TCHY=RCHY

NEXT N

HEXT A

GET A%'IF RAgF="" THEN 636
COLOR 1.3.6.0

CRAPHIC B

END

REM

151

700
785
710
728
7320
740
895
200
985
910
928
530
240
850
gEB
995
1606
1603
1010
1820
1830
1648
10508
1860
1e7a
1880
1856
1100
1105
1110
11z0
11308
1140
1993
20008
2005
2010
2020
2030 P
2040
2058
2060
2079
2929
2850
2100
2185
21108
2120
z213@
2149

152

REM SHAPE DATA

REM

TATA S512.450.512,300
DATA 512.260,%70,300

"DATAR S70.3008,455,300

DRTA 45%5,300,512,200
REM
REM DRAW BORDER
REM
POINT 3,0.0
DRAW 3 TO 9,1023
DRAW 3 TO 1023,1023
DRAW 3 TO 1023.0
DRAK 3 TO B.©
RETURN
REM

REM DRAW SHAPE

REM

FOR N=1 TO ML

D=6

P=Q{N>-0C(N)
Q=R{(NI-PC(H)
RL=SQR(P#P+GQ¥Q)
L¥=P/RL

LY=0/RL

FOR 1=0 TO RL STEP DS
¥=COCNI+THLXD
=P N> +IRLY

IF %<® OR ¥<© THEN 1129
POINT 3,%.Y

NEXT 1

HEXT M

RETURN

REM

REM ERASE SHAPE

REM

FOR N=1 TO HL

DS=

=S(N)*HfH)
Q=TC{NI-ZCHY
RL=SQR(P#P+CI¥Q>
Lx=P/RL

L=0/RL

FOR I=0 TO RL STEF DS
K= CWIMO +THLKD
Y=Z (N +T#LY

1F ¥<@ OR %<& THEM 20828
FOIMT 4.4,%

MEXT 1

NEKT N

RETURH

MOVE
DESCRIPTION

The application of the transformation matrix can be expanded to
cover all manipulation of a shape, not just rotation but also
movement (known as translation) and scaling. The primary
purpose of this program is to show how a shape can be moved
about the screen, but it also embodies the capability of scaling and
rotation. The transformation matrix consists of six quotations.
These equations are stored in lines 3000 to 3100. Notice that
equations 1 to 4 consist of the rotational transform equation
multiplied by a scaling factor, equations 5 and 6 do the movement
by adding an offset to the shape position. The program candisplay
any two dimensional shape. This shape can be moved to any part
of the screen, rotated through 360 degrees and stretched in either
X or Y axis or both.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are five parameter values
which control the movement, rotation or scaling of the shape;
these are setinlines 120 to 160. Lines 120 and 130 contain the
X and Y scaling factors — full size =1, half size =.5 etc. The
rotational angle of the shape is stored as the variable rx in line 140,
note that since this angle must be in radians it is multiplied by
3.14159/180. The movement of the shapein the X and Y axis is
stored in lines 150 and 160, and is the number of pixels in either
direction from the original coordinates stored in the shape table.

The object shape is stored in a shape table. This table consists
simply of the X and Y coordinates of the end of each line
comprising the shape. It should be noted that there are one more
pair of coordinates than there are lines in the shape, the number of
lines in the shape is stored as the variable np as the first value in
the data table. The data table is stored as data statements in lines
1110 to 1130. Try designing your own shapes using graph paper
and then entering the new values into the data statements.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at
400

110 set up transform matrix array

153

120-130
140
150-160

210-260

400-460

1000-1050
1110-1130
2000-2080
3000-3100
4000-4070

5000-5220

X and Y scaling factors

angle of shape rotation in radians

X and Y axis movement of shape from initial
position

main program execution loop

border drawing subroutine

load shape data into arrays — arrays X and Y
contain the original shape data — arrays U and
V contain the transformed shape data

data statements containing shape data — line
110 contains the number of lines in the shape
find the centre of the shape

perform transformation matrix calculations
performs the transformation on each coordinate
point within the shape table

draws the shape using the transformed data in
the arrays U and V, note lines 5120 and 5130
check that the shape does not fall outside the
screen area

154

1R

EM MOVE

2 REM FEEEUKEREERRCEE R F R
3 REM

io
Pl
gl
40
1<)
€0
7@
75
g0
sex
joke)
188
193
i1@
12@
130
140
158
160
150
200
205
zie
220
23@
240
250
2¢0
270
280
258
390
400
4@5
41
420
430
440
450
4£6@
955
pRalal
1606
161
122
103
184
185

REM THIS PROGRAM USES MATRIX TRAMSFORMATION TO
REM MOVE,ROTATE. OR SCALE A THWO DIMENSIOMAL SHAPE
REM
REM
REM SET COLOURS

GRAPHIC 2

COLOR 3.3.6.18

REM

REM DRAM BORDER

GOSUB 480

REM

REM SET UP CONSTRHMTS., VARIABLES, AND ARRAYS
REM

DIM AC3,3

SK=1

S=1

Rx=8C¥%n/180

Tr=~50

TY=2

REM

REM MARIN PROGRAM LOOP

REM

BOSUR 1600

GOSUR 2a@eo

GOSUR 3000

GOSUB 4069

GOSUE Sooe

OET R$:IF R$="" THEN 260

COLOR 1,3.€6.0

GRAFHIC @

END

REM

REM DRAW BORDER

REM

POINT 3.8.0

IRAW 3 TO 6,1823

DRAW 3 TO 1@23, 16023

DRAW 3 7O 1923.,0

DrRARW 3 TO 8.8

RETURM

REM

B REM INITIALISE SHAPE

2 REM

8 RERD HP

@ DIM KCHP+1D WCHP+LD S UCHP+L Y, MCHP+LD
2 FOR I=1 TO HP+{

@ RERD KC(I>,Yily
8@ MHEXT 1

1656

1098 REM

1192 REM SHAFE IATA

1105 REM

1112 DRTA 5

1122 DATAR 1@@,100,150,128,175.73
1130 DATA 150,720,109,57,102,102
1288 RETURH

1295 REM

2008 REM FIMD CEMTRE OF SHAPE
2085 REM

2010 C¥=0:CY=0

2020 FOR C=1 TO WP

2030 CH=CH+ALTS

2640 CY=CY+Y(CO

2@ MEXY C

2668 CH=CK/NP

2a7a CY=CY /NP

2a50 RETURM

2995 REM

2000 REM SET TRANSFORMATION MATRIX
2065 REM v

ap1R AL, 12=SK&COSIRID

2028 AL, 2)=SK&SINIRI)

3028 REM

2040 RC2, 1)=8YH(-SIN(RZD>
2p50 A2, 2>=SY#¥COS(RZD

2060 REM

Q79 AL, 10=TH

@R AL3.20=TY

2084 FEM

2102 RETURM

3995 REM

4p0@ REM DO TRANSFORMATIOM
4085 REM

4018 FOR @=1 TO NP+{

4020 KT=K(Q)~-CX

4030 YT=Y(0)-CY

4040 UCRY=CH+CRTHACL, 12+7THAC2, 15+AC3, 150
AQSD MEEI=CY+HCKTHALL, 2)+YTHACZ, 20 +RCE, 230
4068 HEXT 2

4672 RETURM

4925 REM

5@00 REM DRAL SHAFE

5P05 REM

se1@ FOR G=1 TO HP

5620 KBE=L(G) YB=V (R

Ep28 AE=U(0O41) I YE=VOR+LD

5E40 P=NE~XB

5250 N=YE-YR

sBS0 R=S0R(FPHPLO%CD

5878 L¥=P/R

156

a8 LY=0/R

5820 FOR I=@ TO R STEF 1
5100 M=C#, TH(KB+IHLKD

S110 Y=12223-CHCrE+THLY)
5122 IF XK<@ OR Y4B THEH SzP2

S132 IF Y>1023 OR H>1823 THEW 5209
D122 POINT 3,¥.¥

5ze@ MEXT 1

5218 MEXT @

5220 RETURM

RERDY.

167

i
e
s
-
Nwim?zﬁ@%w

e
mw.

.
.

e

= -

Lo eenitits
.

i

o

.
iy @mmw&
.

&mwt

e

-
.

S
. S?ﬂé
conan
/iz%ﬁa%aﬁu?;?ﬂﬂ.u%?
QM“M!);

me
-
.. :
v,&:a.%.&.&:ﬁ“&‘it‘w«&; s . o
s -

‘ e B S win ey SEa
-

ael .
Buesa iy et

e
.
. .

e

.

.
e
.

. cm.
=

L

resienis

.

THREE DIMENSIONAL SHAPE 1
DESCRIPTION

The application of the transformation matrix can be expanded
further to cover the generation of three dimensional shapes — it
should be noted that they are displayed two dimensionally but
optically appear to represent three dimensional objects. To do this
simply requires the addition of an extra axis — the Z axis — to the
X and Y axis used in a two dimensional transformation matrix. The
transformation matrix consists of sixteen equations, they are
stored in lines 3000 to 3190. | shall not attempt to explain the
mathematics, for those interested | would suggest one of the text
books on the subject — ‘Principles of Interactive Graphics’ by
Newman and Sproul.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are nine parameter values
which control the movement, rotation or scaling of the shape,
these are set in lines 120 to 200. Lines 120 and 140 contain the
X,Y and Z scaling factors — full size = 1, half size = .5 etc. The
rotational angle of the shape in either one of the three axis are
stored in fines 180 to 200, note that since these angles must be in
radians they are multiplied by 3.14159/1 80. The movement of
the shape in the X,Y and Z axis is stored inlines 1560t0 170, andis
the number of pixels in either direction from the original
coordinates stored in the shape table. ‘

The object shape is stored in a shape table. This table consists
of two parts the first is simply of the X,Y and Z coordinates, of
each cordner coordinate comprising the shape: The second part is
a table of connections of pairs of points between which a line
should be drawn. The number of edges in the shape is stored as
the variable ‘ne’ and the number of coordinate points between
which the edges are connected is stored as variable ‘np’. The
coordinate table is stored as data statements in lines 1210 to
1220, and the connection table in lines 1310 to 1330.

Note: all programs in this section require 16K RAM expansion.

PROGRAM STRUCTURE

50-60 set colours
80 draw border around screen using subroutine at
900

160

100-110
120-140
160-170

180-200
410-450
900-960
1000-1050

1100-1170
1200-1220

1300-1330
2000-2240
3000-3160
3200-3350
4000-4080

5000-5900

set up transform matrix arrays

X,Y and Z scaling factors

X,Y and Z axis movement of shape from initial
position

angle of X,Y and Z axis rotation in radians
main program execution loop

border drawing subroutine

load shape data into arrays — array S contains
the coordinate table of the original shape —
array E contains the line connection data —
array M contains the transformed coordinate
data

read in the shape data

data statements containing coordinate shape
data as X,Y and Z for each corner point, note
that the first three values comprise the
coordinates for point 1, the second three for
point 2 etc

data statements containing line connection data
draw the shape

perform transformation matrix calculations
set up scaling and translation matrix

performs the transformation on each coordinate
point within the shape table

find centre of shape

161

1R
2R
3R
10

28

ci2)

35

4@

se

5@

€5

e

[¢-]

806

&5

9@

95

ioa
110
128
130
140
150
160
170
1e0
1se
zoa
400
410
420
43@
440
450
sea
Sie
520
530
9093
g83s
g1e
o2a
$306
940
950
21217
895

EM 3D DRAWING 1

EM #hdbhiop s h i

EM

REM R THREE I'IMEMSIONAL SHAPE IS DRAWM BY THIS PROGRAM
REM THE ROTATION POSITION AND SCALE OF THE OBJECT
REM CAN BE CHRNGED TO GIVE DIFFERENT YIEWING RHGLES.
REM

REM SET COLOURS

CRAFHIC 2

COLOR 3,3.0.18

REM

REM DRAW BORDER AROUND SCREEH
REM

COSUB Sae

REM

REM SET UP COMSTANTS, VYARIARELES., AND RRRAYS
REM

DIM R(4.4)

DIM BC4,45

S¥=.3

SvY=.3

£Z2=.3

T¥=1

TY=1

TZ=1

RR=40%n1/180

RY=2¢%n/120

RZ=50%n/180

REM MRIN PROGRAM LOOP

GOSUB 1e00

GOSUB Seee

GOSUB 008

GOSUR 4000

GNSUE 20008

GET R¢$:IF Ag="" THEW 509
COLOR 1.3.6.8

GRAPHIC 8

END

REM BORDER DIRAWING SUBROUTINE
REM

POINT 3.8.9

IRAW 3 TO 8,1023

IRAW 3 TO 1823, 1023

DRRM 3 TO 1823.8@

DRAW 3 TO 2.0

RETURH

REM

1@ REM INITIALISE SHAPE

166
121

5 REM
@ NP=3

1028 ME=12

163

1830
1040
i@ese
1€
1122
1110
11202
1130
1140
1150
1170
1195
1200
12108
1228
1235
130@
1385
1310
1320
1330
1900
1995
2000
20035
2020
2030
2040
20495
2059
2860
2a70
2089
2050
2120
2110
2120
2130
2140
2150
21€0
2179
2189
2150
2200

2250
2240
2562
2995
cialals

cjalata]

164

REM

DIM SC3,HPD

DIM ECNE. 2D

DIM MC3LHFD

REM

FOR N=1 TO WP

READ SC1,NY,SC2,N>,8C(3, N
MEXT M

FOR K=1 TO HE

READ ECK.,1),ECK, 20

HEXT K
REM
REM X,Y,Z FOINT COORDINATES

DARTA @,0,200,200,0,209,200,0,6,8.,8,0
DATH 0,268,200, 200, 200,200, 260, 200.0.08,202,@
REM

REM COMMECTION DARTH

REM

DATA 1.2,2,3.:3,4.4.1

IATA 5.1,2.6,4.8,7,3

DATR 6.%.%5.,8,8.7,7,6

RETURM

REM

REM DRAW SHAPE

REM

FOR K=1 TQ HE

Vi=ECK, 1)

v2=ECK,2)

IF ¥i=g THEN 224@

®B=M(1,V1>

WE=M{2,V1)

XE=M{L1.V2

YE=M{2,Y2)

DS=1

P=HE~-XB

Q="vE-YB

R=SOR/LP#P+Q¥C 2

LX=P/R

LY=0/R

FOR I=0 TC R STEP D%

W=EHA, PHCKBHIHLAD

=1 023~CH(YEFIHLY)

IF <@ DR ¥Y<@ THEN 2230

IF ¥>1223 OR ¥>1@23 THEM 2230
FOINT 3,¥,Y

HEXT 1

HEXT K

RETURHM

REM

REM SET TRAMSFORMATION MATRIX
REM

3010
zeza
2030
3840
clabs)
2068
zeve
30860
sa30
2160
2110
3128
3138
3140
3150
318
3195
3200
3285
3210
3220
32309
3248
3250
3260
3270
3230
3280
3300
3310
3320
333a
3340
a3oe
3960
3335
4000

AL, 1>=COSCRYIHCOSCRZ)
A1, 29=COSCRYIHSINCRZD

A1, 3>==SIN(RYY

AC1,4)=0

A2, 15=COSCRIDI#(~-SIHIRZ) Y+SIH(RXIHSINCRY SHCOSCRZY
A(2, 2)=COS(RXIHCOG(RZI+SINCRAIKSIH(RY YRS INCRZ)
AC2.3>=SINCRNI#COS(RY) .

A2, 45=0

A3, 1=(~SIHIRRY Y ~STHIRZY HCOS (RK S INCRY MCOS(RZ)
(R, 2> =-SIN(RYI¥COSCRZ Y +COSCRZIMSIMIRY IHEINCRE D
AC2, 3)=COSCRXIHCOS(RY)

A(3,45>=0

AC4,1>=0

AC4,2>=0

AC4,3>=0

FiC4,45=1

REM

REM SET UP SCALIMG AMD TRANSLATION MATRIX

REM

BC1, 1)=SKHACT, 1)

B(1,2)=SK¥R(1,2)

B(1.3>=SK¥AC1,3)

REM

B(2,1>=SY¥ACZ, 1)

B(2,2)=SY#A(2,2)

B(2,3)=SY¥A(2, 3)

REM

B(3, 1)=S2%A(3, 1)

B(3,2)=SZ¥A(3, 2)

B(3,3)=SZ¥A(3, 3)

REM

B4, 1>=TR

B(4,2)=TY

BC4,3)=TZ

RETURM

REM _

REM PERFORM TRAMSLAT IO

40035 REM

4010
4015
4020
40230
4040
4045
40508
4060
4476
40208
4908
4395
5000

FOR @G=1 TO WP

REM

XT=C8{1,Q>-XC

YT=5(2.0>-YC

IT=C(3,>-2C

REM

ML, QO=KC+(XTH#B{1, 1 3+YTHBL2, 1 04+ZTHB(3, 1)+B(4, 1)
MC2,@)=YC+(XTHB(1, 2)+YTHR(2, 2)4+ZT#R(3,2)+E04,2>)
MC3, Qr=ZC+(K¥THBLL, 3V+YTHEL2, 3)+ZTHE(3, 35+BC4, 527
HEXKT R

RETURH

REM

REM FIMD CEHTROID

165

5005 REM

5010 F=0:0=0:R=0
5@28 FOR I=1 TO WP
5030 P=P+S(1.17
5040 Q=0+S(2,1)
5058 R=R+S(3, 1)
560 HEXT 1

5a7@ NC=P/HP
5080 YC=0/HP
£@90 ZC=R/HP
5969 RETURH

READY.

166

THREE DIMENSIONAL SHAPE 2
DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that an additional subroutine has been added to
remove hidden lines. Hidden lines are those lines which lie out of
sight of the viewer and are hidden behind the front surfaces. By
removing these hidden lines the shape of the object becomes
much clearer. The subroutine which checks for hidden lines is
located between line numbers 6000 and 6140.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 1, consult this program for information. Note that the
connection table now describes object faces rather than lines.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1
consult for details.

6000-6140 subroutine to check for hidden surfaces

167

168

1 REM 2D DRAMING 2
2 REM spdimhsorkpiisepsioby s
2 REM

18 REM
REM
28 REM
2% REM

20

36

27 REM

42 FEM SET COLOURS

5@ GRAFHIC 2

&0 COLOR 2,3,0,10

€5 REM

72 REM DRAL BORDER AROUMD SCREEN
73 FEM

en GOSUE 292

25 REM

20 FEM SET UP COMSTANTS, YARIAELES,
95 REM

102 DIM Al4,40

118 DIM B<4.45

115 DIM 203>

117 DIM DL3D

1200 E¥=.3

122 S¥=.2

140 5Z=.2

152 TH=1

162 TY=1

178 TZ=1

180 R¥=40%n/120

190 RY=20%n/130

200 RZ=50%n/120Q

400 REM MAIM PROGRAM LOOF
41@ GOZUR 1002

420 GOSUR 5000

420 GOSUR 300@

442 GOZUR 4000

452 GOSUE €0en

522 GET RF:IF RE="" THEW S04
510 COLOR 1.3,6.,8@

520 GRAPHIC @

528 EMD

o02 RPEM EORDER DRAWMING SUBRDUTIHE
ons REM

212 POINT 3,2.9

922 DRAKM 2 TO @,1023

232 IRAM 3 TO 1223, 1922
¢42 DRAM 2 TO 1822.92

a5a DRAM 2 TD 2.4

268 RETURM

935 REM

A THREE DIMEMSIOMAL SHRPE IS DRAMM BY THIS
FROGRAM. THE ROTATION POSITIONM ANMD SCALE QF THE
ORJIECT CAM BE CHAMGED TQ GIVE DIFFERENT WIEWIHG
AHMGLES. THE FROGRAM IMCORPORATESZ A ROUTINE TO
REM FEMOVE HIDDEW LIMES

AMD ARRARYS

169

1682
1265
1013
1020
1025
1630
19402
1050
166
11922
1118
i12m
1122
11235
1149
11560
1172
1180
1195
1202
1218
1222
1295
13892
12095
1219
12268
1320
1240
1352
1360
19920
1955

2nee
2005
el]
2a3a
2n4@
2m45

s s) R)R

(M= D WD N Ha
DINIIVADD

SEOSRURINESEORORNESEN]

FEM IMITIALIZE SHAPE

REM

NP=E

HE=4

HF =&

REM

TIM SC3, NP

DIM ECHF.ME. 2D

DIM MCRLHFD

FEM

FOR M=1 TO HF

READ SC1,MY.SL2,H), 803, M)
HEXT ™

FOR F=1 TOQ MWF

FOR k=1 TO ME

READ ECF, K, 1).E(F, K. 20

HEXNT K

HEXT F

REM

REM ¥.%.,2 PQIMT COORDIMNATES
IATA 9,0.200,2072,0,200,200,0,2,2,2,9
DRTAR 0,290,200, 200,209, 200, 202,202,02, 0,209,
REM

REM COMHECTION DRTA
REM

DATAR 1,2.2,2.2,4,4.1
IATR 5.1.1,4.4,8,8,5
IATA €.5,5,2.8.7.,7.6
IATA 2.6,6,7,7,3,3,2
ATR 1.%5,%5.6.6,2,2,1
DATA 2,7.7.8.2.,4.,4,23
RETURN

REM

REM DRERAK SHRFE

REM

FOR K=1 TO HE
VI=E{F. K. 13
Wa=g{F.K.2

IF Vi=0 THEN 22482
MB=MC1,%1>
YR=M(2,W1D
WE=MCL1,WED
WE=ML2, WED
ne=1

F=YE~"B
(="E~-YE

R=00R (PRF+CIHO D
L¥=P-R

LY=R-R

A FOR I=R TO R STEP D2
D H=EHRA, THOSEFTHLED

Y=1022~EX(YB+I%LY)

IF ¥<B OR Y{& THEM 2239

IF ¥>1@22 DR Y>1222 THEM 22302
FOIMT 2.¥,%

7 HEXT I
i HEXT K
2 RETLURM
- FEM

2000 REM SET TRAMSFORMATION MRTRIX
2005 REM
ZRIA ACL, 1)=C0RCRYINCOSIRED
2020 AL1.2)=COS(RYIRTIHCRT)
2620 A0, 3)=-RIMCRY)
2040 AC1.45=0 .
2E50 ACZ, 1)=COSIRYI¥C=SIH(RZ Y J+SIN(RM NS IMNIRY I¥COS(RZD
AOEE A2, 2)=COSCRYIHCASIRZIFSIMIRMISTIHC(RY ¥SINIRZ)
2OTA A2, 2)=SIHIRYIRCOSCRY)
2080 AL2.4)=0
2092 A2, 1=(-SINCRE MRS INCRE B +COSCRMINEIMCRY DHCOS(RZ)
2100 A3, 2)=-SIH(RYIKCOSCRZIHCOSIRZIHEINIRY IREIMNC(RZ)
2110 A2 2Y=COSCREIVCOSIRY)
2120 R(2.45=0
2122 AC4.10=0
2140 AC4,2)=R
2150 A<4,2)=0
2160 AC4,4)=1
2195 REM
A2 REM SET UP SCALIMG AND TRAMSLATION MATRIX
2205 REM ¢
AZ10 BO1.1Y=0K¥RC1, 1)
2228 E(1.2)=0M¥AC1.2)
BC1,2)=0¥%ACL, 3D
REM
=0 EC2.10=0WHAC2, 1D
2R BL2.20=SY¥ACS. 2D
B2, 2)=8Y¥AL2.3)
220 REM
2290 BLE,10=5C%AC3, 1)
3300 R(T,2)=5I%ACI. 2
2210 B 2I=C57HAC3, 3
=220 REM
AN BL4,10=TH
AE4AG RC4,29=TY
2350 BL4,24=T2
2%EA RETURH
a99%5 REM
4600 REM FERFORM TRAMSLATIOM
4205 REM
APLA FOR G=1 TO MP
4015 REM
AC2A MT=5C01, Q¥ =-H0

171

4@39
4048
40245
4056
4@&0
4070
4e28
4500
4995
S060
5005
=010
5020
5030
5040
059
SQE8
sara
5024
5098
s220
5993
adald
caas
ca1e
caze
5832
040
£a5a
(Aul Ay
&a7a
€30
€250
&120
6114
c120
s13

€146
€508

YT=E8(2.05-%C

Z2T=8(3.,>-2C

REM

MC1, Qy=XC+(XTHBCL, 1)+YTHE(2, 1 2+ZTHE(2, 10+B(4, 150
M2, Qy="rYCH(KTH#BC1, 2)+YTHE(2, 2)+ZTHB(3, 2)+B(4. 232
M3, 0r=Z0+(KT#BC L 3Y+YTHEC2, 3)+ZTHER(3, 3)+B(4, 30D
NEXT @

RETURH

REM

REM FIND CEMTROID
REM

P=0:Q=0:R=0

FOR I=1 TO NF

P=P+3(1, 17

e=Q+S2,17

R=R+3(3, 1>

MEXT 1

XC=P/NP

YC=0/NP

ZC=R/NP

RETURH

FEM

REM HIDDEN SURFACE CHECK

REM

FOR F=1 TO HF

FOR J=1 TO 3

CCIY=MCILECF, 1,200-MCILECF, 157100

DCII=MCILECF, 2, 100-MCT,ECF. 2,220

MEXT J

P1=C{2%D(3>-C(3O%D(2D

P2=C(R)#DC1)>-CC1O%D(3)
S=CC1Y¥D(2)-CA20%DC1D

R1=1~-MC(1,ECF, 1,200
L2=1~-M(2,ECF, 1.2
A=50@A-MC3,ECF. 1,220

H=P1¥01+P24QZ+PIHG3

IF W>=@ THEM GOSUER 2240
HEXT F

RETURM

RERDY.

172

THREE DIMENSIONAL SHAPE 3
DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that additional subroutines have been added to
remove hidden lines, and to shade the faces of the displayed
surfaces in respect of incident light coming from above in the Y
axis. By shading the surfaces the viewer becomes fully aware of
the shape of the three dimensional object as well as adding realism
to the display.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 2, consult this program for information.

PROGRAM STRUCTURE
Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1
consult for details.

6000-6140 subroutine to check for hidden surfaces
7000-7330 shade the displayed surfaces

173

174

1 REM 2D DRRMING 2

2R
2R
1@

=5
-
el
o
Chall

asten

NN
-] i

els]
22
402
A
£2
2
e

A A b A A b e b e L)WY D D))
LB IO Rl el el B R BT E B

s,

NN DR

3 DRERKM 2 TO 2,1023
2 DREAK 3 TO 18232.102%
2 DIFEAM 2 TO 1822,8

B sk e et et etk ol

EM

FEM R THREE DIMENMSIOMAL SHARE IS DRALWM BY THIE
REM PROGRAM.THE ROTATIOM POSITION AMD SCALE OF THE
REM QRJECT CAM PE CHAMOED i GIVE DIFFERENT WIEWIMG
REM AMGLES. THE PROGRAM IHCORPORATES A ROUTIME TO
REM REMOVE MIDDEM LIMES.THE DISPLAYED FACES ARE
REM SHADED IM RESFECT OF INCIDEMT LIOHT COMIMG
REM FROM REOVE IM THE Y-RXIS.

FEM

REM SET COLOURS

GRAFHIC 2

COLOR 2,2.,2,1@

REM

REM DRAL BORDER ARAUND SCREEN

FEM

GOZUE 302

REM

REM SET UP COMSTAMTS., YARIARLES. AMD ARRAYS

REM

DIM A4, 4>

DI RB(4,4)

DIl CC35

DIM D3

TZ=1
RY=4D%n/180

RYY=20%n/ 180
RZ=S0%q/120

REM MAIHM FROGRAM LOOP
GOSUR 1008

1 GOSUE SO0

GOSUE 2002

"t THEM S92

END

REM EQORIER IRAMIMA SURROUTIME
REM

FOINT 2.2.,8

>

Q)R

J

{

IRAKM 2 TO 9,0
175

RETURHM

REM

FEM IMITIRLIZE SHAPE
REM

HP=2

HE=4

HF =6

1838 REM

@ TIM SO, MNP

1n’0 DIM ECNF.ME. 29

1058 DIM MO3.HP2

1122 REM

1112 FOR HM=1 TO HF

1120 READ SC1, MY, S(2 N S(3.H)
1128 HEXMT M

1125 FOR F=1 TO MF

1140 FOR K=1 TO HE

1158 FEAD ECF. K. 10,ECF. KL 20
1178 MEXT ¥

11598 HEXT F

1125 FEM

el el st # Y1]

H
DD DM DN
Q) R D D

i I IR A !}3

[
-S)
NP
3R

1209 REM ¥,%.Z2 POIMT COORDIHATES

1216 DATA Q. @'229528918w298;:ﬂ9 2.a.0,2.0
1220 DATA 9,200,292, 200, 209, 200, 202,200.2.0,202.0
1285 FEM

1200 REM COMMECTION DATR

1305 REM

1212 DATA 1,.2,2.3.3.4,4.1

1220 DATA 5.1.1.4,4,2.8,5

]qﬁp’ I‘HTH 6:-.')=: 8J3}?J7)6

1248 DATA 2.6,6,7.7.3,3.2

1358 DATA 1)u/q0536;2A2J1

1262 DATA 2.7,7.8.2,4. 4,7

1502 RETURM

1295 REM

2raa REM DRAM SHARE
ZPRAT REM

2820 FOR K=1 TD HE
2820 V1=E(F:Kal)
2042 V”"E(F K.2

2043 IF Vi=0 THEH 224
2850 HP*Mfi M1D
2R60 YR=M{2.W1>
2070 KE=MC1,V2)
2020 YE=MI2. V2
opRE De=1

2120 FP=XE-KER

2118 O=YE-YE
RE=C0RCP#F+CHAD
Lx=P/F

LY=0/R

i

I

i~

(ORI RINEL
R
ECER]

=

Y
~
(o2}

O B 23=00%
2 B, 30=8¥HACL .2
1 REM

FOR I=02 TQO R STEF DS

HECHRA THOEBETHRLED

Y=1022-c# (YE+T#LY)

IF ¥4 OR Y<{@ THEN 222

IF ¥>1022 OR Y>10223 THEN 22232
POIHT 3,¥.Y

HEXT 1

HEHT K

GOZUR 700

FETURH
REM

FEM ZET
FEM

AC2, 2)=COSRMKIMCOSIRZI+SIMIRMOINSINCRY YRS INIRZ)
AC2, 2=SIMIRKIETOSIRY D

2 RI2:.40=0

A3, 12=(-8THIRK) Y -SIM(RZN+COSCRYMSINCRY XCOS(RZ)
A2 2=-STHIREI¥COSIRZI+CORLRZIKSINCRY YRS IMCRZ)
A2, 23=COSCRAIHCOZCRY)

R(2,45=0

Al4.15=0

A4, 2>=0

RC4.30=0

Afd.45=1

REM

FEM ZET UF SCALIMG AND TRAMSLATION MATRIX

S REM

BOL.10=C¥¥ACL, 1Y

B2, 1 3=5YHRC2. 17
BC2.20=0"8AC2.2)
B2, 20=0W%R02,2
REM

BOS 1 0=82%AC2. 10

RO, 20=00%AC2, 20
BORLEp=00%AC2. 20

2228 REM

cicla
2240
2250

2900

lekelels]

Pt)
4000
LYl

B4, 12=T¥

B4, 25=TY

B4, 20=T2

RETURM

REM

FEM PERFORM TRAMSLATIOM
REM

177

4010
40115
4020
402m
4p40
4045
4050
406D
4070
4050
4208
4995
s000
5005
5210
5620
5030
5040
=050
SEED
=070
5080
5050
5908
5955
£0P0
£00S
6010
€020
6030
£040
£65D
£058
€078
£050
£090
£10@
€112
£126
£130
£140
£500
£995
7008
7005
7610
7620
720
7E48
7a50
TAED

178

FOR =1 TO HP

REM

¥T=S(1.,Q5-xC

YT=842,0~YC

ZT=8(3.0»-2C

rREM

M1, Q=M+ CETHEBCL, 12+ THEC2, 12 +2ZTHBID, 1D+E04, 100
MCZ, QOY=YO+IMTHEC L, 20 +7YTHEC2, 20+ ZTHE(2, 2)4+E(4. 230
MCR, Q=20+ (UTHBCL, 20 +YTHR(2, 3)+ZTHE(R, 30+E(4, 30D
HEXT Q

RETURM

REM

REM FIMD CENTROID

REM

P=0:Q0=0:R=82

FOR I=1 TO HP

P=P+2(1.1>

Q=0Q+S02, 1>

R=R+5¢(3, 1>

MEXT 1

XC=P/MNP

Y=L NP

ZC=R/MP

RETURM

REM

REM HIDDEM SURFACE CHECK

REM

FOR F=1 TO WF

FOR J=1 TD 2
CCIY=M(J.ECF. 1,23 2-MCT,ECF, 1,100
DCI>=MCI,ECF,2,190-MCILENF, 2,207
HEXT J

P1=CC2)#D035-C(30#D20
P2=C(33%D{1-CC1d%DC3D
FP3=CL10#DC20-CI20%DC1D
l=1-MC1,ECF. 1,220

NE2=1-MI{2.ECF. 1,20
R3=50R~M(3,ECF,1,2))

W=P1 %01 +P2#02+P3HLA

IF W>=@ THEHW GOSUB 2889

HEKXT F
FETURM

REM

FEM SHADIMG
REM

RI=M(1,ECF. 2. 100=MCL,ECF. 1,100
RE=M(2.,ECF, 2, 120~-M(2, ECF. 1,10
RE=M(3.ECF. 2. 12)=M(3,ECF. 1. 100
H1=S0RIR1¥R1+R2¥RZ+RI¥RID

Ra4=M(1,E(F.4,129~M(1,ECF. 1,122
RS=M(2,ECF. 4,13 0=-M(Z,ECF, 1,137

7070 RE=M(Z,EC(F. 4, 13)-MI(3,ECF,1.10%
7028 W2=S0R(R4¥R4+RI¥RI+REHRE)

7252 Ri=R1/1

7i8@ R2=R2/11

7118 R3E=R3-1

7120 R4=R4/l2

7130 RS=RS&/WZ

7148 RE=RE/M2

71568 U=R3%R4-R1%FRE

716@ IF U<=-.3 THEM RETLIRM

7172 IF U»-.9 AND U<~.% THEN TS=2
7159 IF U>~.3 AMWD U<C.1 THEHW DS=6€
7228 IF U>.1 AHD .5 THEH DS=4
7240 IF U>.S THEM D2=2

7270 FOR I=1 T0O W1 STEP DS

7280 FOR =1 TO W2 STEP DS

V290 H=E0¥0.7#(MC1,ECF, 1,130+ I%R1+0%R4
73068 Y=1023-6%C(MC(2,ECF, 1., 1))+ 1%R2+0%RS5)
721@ IF ¥<{B OR Y<B THEN7340

7328 IF Y>1023 OR ¥>10823 THEM 7340
7333 POINT 3.%.Y

7342 HEMT @

730 NEXT I

7902 RETURM

READY.

179

THREE DIMENSIONAL SHAPE 4
DESCRIPTION

Perspective is that property of viewing an object which makes
objects appear smaller the further away they are from the viewer.
When looking down a long pole the pole appears to be tapered, but
our understanding of the real world tells us that this is not so. Thus
to add realism to a three dimensional computer display it is often
desirable to add perspective to the display, this program is
identical to the program THREE DIMENSIONAL SHAPE 1 except
that an additional subroutine has been added to remove hidden
lines, and the drawing routine has been modified to incorporate
the hidden perspective algorithm.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 2, consult this program for information.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1

consult for details, except for the following: .

2000-2240 shape drawing routine incorporating perspective
algorithm in lines 2030 to 2045

6000-6140 subroutine to check for hidden surfaces

180

181

1 REM 21 DRAMING 4

2 REM ok sokkiobins
& REM
REM A THREE DIMEHMSIONAL SHAFE IZ DRAWM BY THIS

10
o0
20

el et e B R B N S Wy W) B IR CNOA R R A
) Y -) (] [o i)
2 L’J 3 ::I; :5 :g AU D D DD WOy

-
[, 341

-
D
I I

REM
REM
FEM
REM
REM
REM

PROGRAM,. THE ROTATION POSITION AMD SCALE OF THE
OBJECT CAN BE CHAMGED TO GIVE DIFFERENT WIEMIMG
AHGLES. THE FPROGRAM IMCORPORATES R ROUTIME TO
FEMOYE HIDDEM LIMES. THE ORJECT 12 DISPLAYED WITH
FERSFECTIVE.

SET COLOURE

CRAFHIC 2
COLOR 2,3,8.172

REM
REM
REM
60U
REM
REM
REM
T
nIM
TIM
TIM
OM=
Si=

oD =
2=

TRAI EORTDER ARDUMD SCREEM
P 3@0
SET UP COMSTANTS, VRRIRELES, ANMD ARRAYS

Ar4.4>
Rr4,45
ceas
Dz

.4

.1

.4

TH=-20

T '.'Y -

~-50

TZ=1

R¥=1%n/120
RY=1%n/180
RZ=1%7/120

REM MAIM FROGRAM LOOP
GOZUE 14021

GOSUR SRea

GOSUR 2000

7 QDSUE 4000

45@ GBOSUR 6200

=a@ GET A%:IF Af="" THEN 502
518 COLOR 1.2.6.8

520 GRAFHIC 2

520 END

200 REM BORDER DRAMING SUBROUTIHE
20T FEM

o1ip FOINT 2.8,2

2200 DREAW 3 TO 92,1022

230 IRAM 3 TO 18231827

242 DRAK 2 TO 1222.9

asn DRAM 2 TO @.a

Q&G RETURM

225 REM

2 IATA 8.
22 DATA 2

2 DATA 1
]
A DATAR &
2 DATA 2
Y DATA 1
3
H

A REM INITIARLISE SHAPE
% REM

A MNP=2

2 HE=4

7 MF=&

A REM

B DIM S(2,NP)

2 DIM ECHFLHNE. 20

@ DIM MR

SHPD
REM

2 FOR N={ TO WP
A RERD SC1L,MY 842, M), 8C2, HY

HEXT M

5 FOR F=1 TD HF

P FOR K=1 TO HE

A READ ECF.K.1),ECF, K. 20
2 HEXT K

HEXT F

S REM

REM ¥,%,Z FOIH
o 200,200,0,.0,9,0.0

c
22,200,200,200,200,.0,0

NORDIMATES
a.
2,

mgo

Zz T
.2 a
2a, ’

rIJ .-

' 208,
9,2 + 209
= FEM

REM COMMECTIOH

 REM

RTA

-

DATA

ARNLBNDA I

- e W

DA

- e

AR R VR RS o

DATA
RETLRH
i REM
FEM DRAL SHAPE WITH PERSPECTIYE
REM

FOR K=1 TD HE
w1=E(F;K317
PE%HBS(3@Z/(N(3,V1)-3@@))

A N2=ECF, K, 20

FF=ARS(200,/(MIR, YE)-202))

' IF Wi=@ THEM 2240
A WE=PE#M(1, Y1)

YE=PE#MO2 . MLY
ME=PF#M(1. W2)
YE=FF#M{2,42)
DE=1

P=KE-¥T
A=YE-"R
F=S0R (PH#P+Q#%0 Y
“=RPAR

A LY=0/R

.9

183

2150 FOR 1= TO R STEF D&

2160 K=ER0, 7H#(XB+I¥LAD

2179 Y=1022-6¥(YB+1#L"%>

218p IF ¥<8 DR w40 THEN 22382

2196 IF 31923 OR Y>1@823 THEW 2238

2020 POINT 3.¥.Y

2220 MEXT 1

2240 HEXT K

2288 RETURN

29935 REM

2080 REM SET TRANSFORMATION MATRIX

=A% REM

2616 ACL, 1 3=COSCRYIRCOS(RZ)

2028 A1, 2Y=COS{RYI¥SINIRZ)

20230 AR(1.3>==SIN(RY)

2049 R(:,40=0

bejubal) H(?;1)=COS<RX>#(—SIH<RZ):+SIH<RX>*SIH(R??#COS(RZ)
2060 H(z,2)=CBS<RX>*CGS(EZ)+SIN(RK)#SIN(R?)*SIN(RZ)
3070 ACZ2,3y=SINCRNIXCCS(RY?

2080 ALZ,45=Q

claicl) H(Sa1)=(—SIH<RX>>#(~52H<RZ>)+CGS<RK?!SIN(RV>#CUS(RZ
3104 HCS,2>=-SIN(R%)#CDS(RZ>+CUS<R2>%EEH(RV)*SIH(EZ)
3118 AL3, 3Y=COSLR¥I¥COSIRYD

3128 AL32.4>=0

A132 A4, 10=R

2142 RA(4.2>=0

3152 R74.,3>=0

3160 A(4,4>=1

31795 REM

4200 REM SET UP SCALING AMD TRANSLATINON MATRIX

2205 REM

2210 RC1,1>=0M¥R01,1)

2226 RC1,23=CH%RAC1,2)

a230 BC1, D=CHHACL1 .30

2240 REM

a25m B2, 1¥=CY#AC2, 1>

A2EM RLES, 2)=SYHRC2,2D

[A27A BOR2.2)=E9%¥R(2,3)

&3228 REM
2290 BRI, 10=22#RAC2, 1)
2230 BCR,2y=C032%AC3,.2)
A310 BC2R.3V=CSTHAC3, R
& REM

BC4,13=T¥

R, 2)=TY
R(4,25=T2Z

FETLRM

REM

REM PERFORM TRAMSLATIOHN
FEHM

FOR O=1 TO HF

D DD AT) LY) i)
el R R R, VR
DADUAD DR

F A EDEBEDNO RA

184

4015 REM
4028 KT=S(1,05-XC

4030 YT=5(2,00-YC

4P46 ZT=S(3,QY~ZC

4845 REM

4050 M1, 0)=XCHCXTHRCL, 1) +YTHBC2, 1 9+ZTHE(S, 10+B(4, 157
40E0 M(2,0>=YCH(RTHRCL, 2)+YTHE(2, 23 +ZTHE(3. 23+B(4, 2))
4670 M(3,03=ZCH(XTHRLL, 3)+YTHB(2, 3 +ZTHRC3, BY+R(4, 3))
4028 HEXT 0

4560 RETURH

4995 REM

5GA2 REM FIND CEHTROID

=(E5 REM

5G10 F=0:0=0:R=0

SM20 FOR I=1 TO NP

5628 P=P+SC1, 1)

5040 0=0+3¢2, 1)

5850 R=R+S(3, 1)

=068 NEXT 1

5678 WC=P/HP

5Q30 YO=0/HP

£(99 ZC=R/MP

=908 RETURN

£995 REM

€002 REM HIDDEN SURFACE CHECK

6205 REM

€318 FOR F=1 TO NF

€020 FOR J=1 TO 3

6028 CCId=MCT,ECF. 1,2))=M(J, ECF, 1,15)
€040 D(IY=M(J,ECF,2,1)9=MCT,ECF.2,2))
6050 NEXT J

£@6@ P1=CC2)¥D(A)-COIINDI2)

€070 PZ=CCRI¥DC1I~0C1IHDI3)

EBZR PR=CC1Y¥D(2>~CC29%D01)

6090 N1=1-M(1,ECF.1,2))

€109 O2=1-M(2,ECF,1,2))

£110 O3=SA0-ML2,ECF, 1.2))

€120 W=F1#01+P2HC2+P2#03

£130 IF W>=@ THEM DOSUR 2029

€148 MEXT F

£909 RETLRH

185

INDEX

Arcl 71

Big Character__112

Character Building

106
Circle 63
Colour Control 6
Colours_ 26
ComputerArt 5
Disk 1 75
Ellipse__ 67
Fan 22
Graph____ 88

Hidden Lines____ 167
High Resolution 30
Hi-Res Cursor___ 100
Hi-Res Cursor1__ 101

Interpolate 95
Line 44
Map 16

Move 153

Perspective 180
Piechart 83
Polygon1____ 51
Polygon2 54
Rainbow_ 19
Random Colours__14
Rectangle 1 48
Rectangle 2 58
Rotate____ 138
Rotate2___ 142
Rotate3__ 147
Scale1_ 118
Scale2__ 122
Segment 79
Shading______ 173
Stretch1_____ 126
Stretch2____ 131
Three Dimension
Graph___ 92
Three Dimension 1
160
Three Dimension 2
167
Three Dimension 3
173
Three Dimension 4
180

T e DU ey i e — el .

Duckworth Personal Computing series

VIC Graphics

Written by Nick Hampshire, author of many books on popular
computing and publisher of Commodore Computing International, this
book provides the reader with an introduction to programming
techniques used to generate graphics displays on a Commodore VIC.
Topics covered include:

* Using colour

Two dimensional shape plotting

Shape plotting

Shape scaling and stretching

Shape movement

Shape rotation

Plotting using matrix manipulation ! |
e Three dimensional shape plotting |
Vic Graphics is a must for every VIC user who wishes to use the ! ;
machine to its maximum graphics display potential. 1

e o 0 00

The Old Piano Factory {
43 Gloucester Crescent, London NW1 IN UK ONLY £6.95 NET ' =~

I::::-: SO M -_::-I..l'lﬁ
-

o o

Duckworth ISBN 07156 1702 8 1
i
|

5

........
........

